
BiDAF Pro Max for Question Answering System

Stanford CS224N Default Project
Mentor: Kendrick Shen

Zhengguan Dai
Department of Aeronautics and Astronautics

Stanford University
garydai@stanford.edu

Qingyue Wei
Department of Electrical Engineering

Stanford University
qywei@stanford.edu

Yitao Qiu
Department of Civil and Environmental Engineering

Stanford University
yitaoqiu@stanford.edu

Abstract

As one of the ultimate goals of natural language processing, machine comprehen-
sion (MC) can be assessed by answering one or multiple questions with a chunk
of text. In order to improve the performance of our model on SQuAD 2.0, we
explore different embedding operations (character embeddings, token features),
attention mechanism (iterative reattention) and output prediction structures (con-
ditioning prediction) based on the baseline model, compared with QANet. Our
results show that token features significantly improve the prediction by raising F1
score and EM score by >10; the iterative attention mechanism could further im-
prove the model, achieving F1=81.65 and EM=77.89 on dev examples, F1=76.63
and EM=73.27 on test examples.

1 Introduction

Machine comprehension (MC) is one of the ultimate and most challenging goals of natural language
processing (NLP). In the past few decades, MC has gained extensive attention from academia and
industry, as it is a promising technology for application including search engine and dialog systems.
MC can be assessed by answering one or multiple questions with a chunk of text, such as a news
article or a short biography. Rajpurkar et al.(2016) introduced the Stanford Question Answering
Dataset (SQuAD) that contains questions whose correct answers can be any sequence of tokens from
the given passage [1].Since the release of SQuAD, RNN-based models such as BiDAF [2], Dynamic
Coattention Networks [3], Match-LSTM and Answer Pointer[4], have been reported with significant
improvements. Vaswani et al. (2017) proposed a novel architecture, so-called Transformer, that fully
relies on self-attention to compute the representation of inputs and outputs without using RNN-like
blocks.

Recently, Rajpurkar et al.(2018) updated the SQuAD by adding 50,000 unanswerable questions
written adversarially, in addition to the previous 100,000 answerable questions [1]. To perform well
on SQuAD, models need to first determine whether questions are answerable, then predict answers
if possible.

In this work, besides the baseline model, we explore different embedding operations (character
embeddings[2], token features[5]), attention mechanism (iterative reattention[6], coattention[3]) and
output prediction structures (conditioning prediction[4]), compared with QANet[7]. Among all
these approaches, we find character embedding, token features, and iterative reattention significantly
improve the model performance.

Stanford CS224N Natural Language Processing with Deep Learning

2 Related Work

The BiDAF baseline of this project, proposed by Seo et al.(2016) in [8], is one of the papers that
stood as the state of the art in MC in 2016. It combined ideas from many previous works and devel-
oped a memory-less static bi-directional attention flow architecture. The model is highly adaptive
through its modulized design, where the last layer can be changed for various tasks. On SQuAD[1]
question answering tasks, it achieved a ensemble-model F1 score of 81.1 and used ablation experi-
ments to show that all components is beneficial to the final results.

Unlike the BiDAF model that predicts the start location and the end location independently, Wang
& Jiang (2016) conditioned the end location probability distribution on the start location probability
distribution [4]. The architecture they proposed consists of two parts: match-LSTM for textual
entailment, and Pointer Net for the prediction of answer boundaries in the passage. Though the
model out-performs the feature-engineered solution, questions with longer answers or starting with
"why" are harder to predict.

Our work is also inspired by Chen et al. (2017)[5] and Hu et al. (2017) [6]. Chen et al. (2017) intro-
duces additional features in paragraph encoding: exact match (EM), part-of-speech (POS), named
entity recognition (ENT) tags, and term frequency (TF). Hu et al. (2017) proposed a reattention
mechanism by memorizing past attentions and using them to enhance current attention along with
the query information.

Figure 1: The architecture overview of BiDAF Pro Max (BPM).

3 Approach

We propose BiDAF Pro Max (BPM) for machine reading comprehension tasks. As shown in Fig. 1,
BPM consists of six components including 1) Embed Layer for word/character/token feature embed-
ding, 2) Contextual Embed Layer for word embedding refinement, 3) Iterative Reattention Blocks
aiming at making the most of all inputs, 4) Attention Flow Layer for query and context vector cou-
pling, 5) Modeling Layer for query-aware context representation encoding, and 6) Output Layer for
predicting Start & End position.

3.1 Baseline model

BPM is based on the baseline model provided by the default project code1 which is derived from
BiDAF [2]. Compared to the original BiDAF, this baseline doesn’t include Embed Layer for charac-
ter embedding. Specifically, the baseline model includes

• Embed Layer for word embedding where pretrained word vectors from Glove[9] are fixed
during training.

• Contextual Embed Layer adopts a one-layer bidirectional Long Short-Term Memory Net-
work (LSTM) [10] for the context/query sequence encoding, thus could obtain the interac-
tion among context/query words.

1https://github.com/michiyasunaga/squad

2

https://github.com/michiyasunaga/squad

• Attention Flow Layer is used for obtaining the correlation and fusion information between
context and query from both direction. To be specific, Context-to-query (C2Q) attention
highlights the more related words in query to each words in context while Query-to-context
(Q2C) attention focuses on similarities between words in context to every words in query.

• Modeling Layer utilize a two-layer bidirectional LSTM for attaining the interaction among
context words that are attended to query.

• Output Layer includes two linear projections for outputs from Attention Flow Layer (de-
noted as G) and Modeling Layer (denoted as M) respectively for Start position prediction.
A one-layer bidirectional LSTM is used to model M and then follows by two other linear
projections for G and LSTM outputs respectively for the End position prediction.

Figure 2: (a) The detailed overview of token features and the embed layer. (b) Illustration of one
Iterative Reattetion Block.

3.2 Character embedding

We implemented the character embed layer as in the original BiDAF paper[2] following the original
CNN embeding structure in the paper by Kim[11]. Each character are first embeded as a trainable
vector. As shown in the Appendix Fig. 5, the character embeddings are convoluted. This convoluted
matrix is maxpooled along the word span in each channel. The resultant vector is then projected into
latent (hidden) layer size (d) and further processed by a small highway network[12] to generate the
character embeded latent vector.

3.3 Token feature and its embedding

In addition to the Glove[9] word embed layer and character embed layer, we adopted ideas from
Chen et al.[5] on additional token features to create a third latent vector. There are four features
implemented by this project, and these features are all pre-computed for the train and test dataset for
efficiency.

• ENT: During data pre-processing, all context are processed by spaCy’s small language
model based on WordNet 3.02. The words in context belong to a noun phrase and is a
named entity are tagged the "named entity type" (ENT). For example, in "Apple is looking
at buying U.K. startup for $1 billion", "Apple" is tagged as an organization, "U.K." is tagged
as a geological entity, and "$1 billion" is tagged as money. Each entity type, including "not
an entity name", is assigned an index and stored as part of the dataset.

2https://spacy.io/models/en

3

https://spacy.io/models/en

• POS: Similar to "ENT" token feature, spaCy processing also returns a "part of
speech"(POS) tag. In the previous example, "Apple" is tagged as "proper noun singular".
All words in the context are labeled a tag index.

• EM: For each word in the context, its lowercase version is checked against query’s words
in lowercase for an "exact match"(EM). If there exists a match in the query, the word in the
context is labeled as 1, else 0.

• TF: The "term frequency" of a word is determined by normalizing statistics of a English
word frequency data published on Kaggle by Rachael Tatman3. This statistics contain 1/3
million most common English words’s frequency in Google Web Trillion Word Corpus.
All words in the context are labeled a normalized frequency if the word is among the top
10000 frequent word, else labeled zero.

These four token features forms a vector length of four for each word in the context. As shown in
Fig. 2(a), this vector is embeded into the token features latent layer with a projection layer and a
small highway network to produce. The word, character, and token features latent layers are added
together for downstream layers.

3.4 Iterative attention

Besides Attention Flow Layer, following the idea of reattention mechanism from Hu et al. [6], we
also applies iterative reattention blocks to take fully advantage of the inputs which could temporally
memorized the previous attention and refine the current attention based on it. As shown in Fig. 2(b),

each reattention block is composed by three components. Specifically, given the inputs Ci−1
align ∈

R
T×2d which is also the output from (i − 1)th reattention block where T is the word length of

context, and Qemb ∈ R
J×2d from Contextual Embed Layer for query encoding where J is the word

length of query, processing details are shown as follows,

• 1) Interactive Alignment. To get the attended vector of the question into the context,

similarity matrix between Ci−1
align and Qemb is firstly calculated as

Si
CQ = Ci−1

alignQ
T
emb, (1)

where Si
CQ ∈ R

T×J and the attended query vector is then obtained by

Ai
Q = softmax(Si

CQ)Qemb, (2)

where Ai
Q ∈ R

T×2d. Then, a fusion function is applied to mix together the information

from Ci−1
align and the attended query vector Ai

Q. Denote the function as Fusion(x, y), its

output as o, then we have

g = ReLU(Wr[x; y;x ◦ y;x− y])

h = σ(Wg[x; y;x ◦ y;x− y])

o = h ◦ g + (1− h) ◦ x

(3)

where σ indicates sigmoid activation function, ◦ denotes the Hadamard product, h serves
as a gate to control the contribution from two different vectors. And the output of the fusion

function in 1) is denoted as Hi
CQ = Fusion(Ci−1

align, A
i
Q).

• 2) Self Alignment. To obtain the attended vector of the context conditioned on itself,
similar as 1), a self similarity matrix is computed as

Si
self = Hi

CQH
Ti
CQ, (4)

where Si
self ∈ R

T×T and the attended context vector is then obtained by

Ai
self = softmax(Si

self)H
i
CQ, (5)

where Ai
self ∈ R

T×2d. Then fusion function is applied again to get the self-aware context

vector Hi
self = Fusion(Hi

CQ, A
i
self).

• 3) Evidence Collection. In this part, a two-layer bidirectional LSTM is used to aggregate
the information from the self-aware context vector Hi

self that

Ci
align = BiLSTM(Hi

self). (6)

3https://www.kaggle.com/rtatman/english-word-frequency

4

https://www.kaggle.com/rtatman/english-word-frequency

3.5 Other approaches

Besides our proposed BPM, we also explored several different approaches.

3.5.1 Coattention Mechanism

Inspired by the Dynamic Coattention Network[3], the Coattention Layer is implemented, which
involves a two-way attention between the context and query. The main difference from BiDAF is
that Coattention includes a second-level attention computation that attends over attention outputs
themselves. Given the context hidden state C ∈ R

T×2d and the question hidden state Q ∈ R
J×2d,

the question hidden state is first projected to Q′ by

Q′ = tanh(WQ+ b) ∈ R
J×2d. (7)

Then sentinel vectors are added to both hidden states. Specifically, C = {C; c∅} ∈ R
(T+1)×2d and

Q = {Q; q∅} ∈ R
(J+1)×2d. Next, the affinity matrix L is computed by

L = CQT ∈ R
(T+1)×(J+1). (8)

Outputs of the Context-to-Question Attention are obtained by

α = softmax(L, dim = 1) ∈ R
(T+1)×(J+1), a = αQ′ ∈ R

(T+1)×(2d). (9)

Outputs of the Question-to-Context Attention are obtained by

β = softmax(L, dim = 0) ∈ R
(T+1)×(J+1), b = βTC ∈ R

(J+1)×(2d). (10)

Then, the second-level attention outputs are computed as

s = αb ∈ R
(T+1)×(2d) (11)

Finally the overall output is BiLSTM({s[: T, :]; a[: T, :]}).

3.5.2 Conditioning end prediction on start prediction

As the baseline model predicts the start index and the end index independently, we connect the start
prediction and the end prediction in the output layer, inspired by Wang and Jiang (2016)[4]. Two
alternatives are implemented:

i) Based on BiDAF attention, the logits for start prediction are passed to a LSTM block,
whose output is added to the logits for the end prediction.

ii) In the first step, an intermediate tensor F1 and the logits for start prediction are computed.
In the second step, the previous logits are passed to a LSTM block, followed by a linear
layer. The outputs are added to F1 to compute the logits for end prediction.

3.5.3 QANet

Besides BiDAF, we also adopt QANet [7] as another model for comparison. QANet only utilizes
depth-wise separable convolution and self-attention in the encoders to extract the local feature and
maintain the global interaction between pairs of words as well. Besides self-attention, QANet also
employs attention mechanism between query and context. Besides the original QANet, we also try
another different output layer. Specifically, the original output layer in QANet uses concatenation
operation before linear projection, and we try another additive output layer where we use linear
projection first and then do addition. Details could be found in Appendix.

4 Experiments

4.1 Data

The primary training, developing, and testing dataset is SQUAD 2.0[1]. Additionally, to generate
token features for context data, we utilized spaCy’s small English language model to generate named
entity and part of speack tags. Finally, we used English word frequency data published on Kaggle,
as mentioned in section 4.3.

5

4.2 Evaluation method

We use the F1 score as the primary metric. We also included EM score in the result section for
additional information and experiments analysis.

4.3 Experimental details

All experiments are implemented in Pytorch. We train all models with a batch size of 64 for
40 epochs with a fixed learning rate at 0.5. We use the default hidden size which is 100 and
default drop rate which is 0.2. Specially, the drop rate for character embed layer is set as 0.1.
As for iterative reattention, we set the number of blocks as 2. We apply Adadelta optimizer
for optimization. The objective function is the negative log likelihood loss. For our proposed
BPM, training time is nearly 11 hours. Moreover, our proposed BPM is built from scratch (but
also based on the starter code). And the compared model QANet is implemented based on
https://github.com/heliumsea/QANet-pytorch. But we also have done some ablation ex-
periments based on QANet where we build the modification from scratch.

4.4 Results

Table 1: Summary of models performance on dev examples

Experiments F1 EM

BiDAF (baseline) 60.90 57.74
BiDAF + Coattention 54.62 50.93
BiDAF + Cond. Prediction 62.08 58.60

QANet 65.03 62.09
QANet + Add. Output Layer 66.13 63.13

BiDAF(C) 65.54 62.02
BiDAF(C) + Iter.Attn. 70.59 67.20
BiDAF(C) + Token Features 76.95 73.25
BiDAF(C) + Token Features + Iter. Attn. 80.32 76.59

BiDAF(C) + Token Features + Iter. Attn.
hyper-parameter tuned 81.65 77.89

Besides the setting mentioned above, we also try to set the decaying rate of the learning rate as 0.9
for every 3 epochs. This finetuned BPM’s test leader-board F1 score is 76.63 and EM is 73.27. On
dev examples, as shown in Table 1, it has F1 score 81.65 and EM score 77.89, outperforms our other
attempts by a large margin.

Besides the overall evaluation, we also do statistic analysis on 1) the ability for our proposed BPM
to deal with questions with and without answers, and 2) the ability for BPM to deal with questions
with specific interrogative words. As shown in 3a, we observe that our model has higher EM for
questions without answers. We believe possible reasons might be that predicting no answer is more
like a binary classification which might be much easier than finding the exact start/end position
for questions with answers. We also select several commonly showing up interrogative words in
questions. As shown in 3b, we notice that our BPM has the top2 EM (81.98, 78.60) for questions
with ’when’ and ’who’, and lowest EM (58.14) for questions with ’why’. We think answers for
questions like ’when’, ’who’ might be short, obvious and concentrative while answers for ’why’
could be varied and thus resulting in low EM. More result details are shown in Table 2 in Appendix.

Coattention and Conditioning Prediction are implemented based on the baseline model, but are not
included in the final model, as they either underperform more than expected (Coattention) or have
limited improvements (Conditioning end prediction on start prediction).

For QANet, we notice that it has very comparable results with BiDAF(C). However, after training
for 1 epoch , it could reach 57.17 in F1 while F1 of BiDAF(C) is only 50.75. As for the higher F1
shown in QANet + Additive output layer, we think it might be that additive layer are more flexible
since there are four different learn-able matrices comparing to only two in the original output layer.

6

https://github.com/heliumsea/QANet-pytorch

(a) Prediction distribution for questions w/ or w/o
answers

(b) EM for questions with specific words

Figure 3: Quantitative analysis

None ENT POS EM TF
64
66
68
70
72
74
76
78
80

F1
 sc

or
e

65.54 66.07 66.29

77.25

65.12

(a) Comparing BiDAF(C) to BiDAF(C) with one
token feature

All No ENT No POS No EM No TF
64
66
68
70
72
74
76
78
80

F1
 sc

or
e

76.95 77.64 77.96

66.1

78.06

(b) Comparing BiDAF(C) with four token features
to BiDAF(C) with three

Figure 4: Ablation Study Results

5 Analysis

5.1 Ablation Study

The token features bring such a significant jump in F1 and EM metric compared to only character
embedding. Thus, we conducted a ablation study on the four features to analyze which one is most
effective. To make the comparison fair, we have two sets of experiment.

• Single Token Feature
In these experiments, all other three token features are replaced by zeros, while keeping

the rest of the network identical (BiDAF(C) configuration). All of these models are trained
under the same initialization seed and same hyper-parameters. As shown in Fig. 4a, the
EM token features is the most effective feature among the four.

• All Token Features Except One
Additional studies are conducted by erasing one feature to zero while other model architec-
ture and training procedures are identical. The results in Fig. 4b show that by removing
some features may help model to achieve slightly better F1 score. However, the differ-
ence is almost negligible. Again, these experiments confirm previous observation of the
importance of EM token feature, removing such would result in a plunge of F1 score.

One interesting finding is that while we include token features in the model, our model could result
in a good performance after very few epochs. BPM could achieve 70 in F1 after only 3 epochs. We
think this indicates that our token features have a very strong correlation with the answers which
makes the training much easier. Another interesting finding is that even though BiDAF(C) with all
four token features has lower F1 than BiDAF(C) with three (no TF), after combining with iterative
reattention, our BPM could result in higher F1 with all four token features than BPM with three (no
TF) (80.32 vs. 79.36). We believe the reason might be that the iterative reattention mechanism could
have a better use of input features and obtain useful information which could contribute more to the
final predictions.

7

5.2 Failure Examples

1. Example 1

Question: Why did France choose to give up no continental lands?
Context: The war in North America officially ended with the signing of the Treaty of
Paris on 10 February 1763, and war in the European theatre of the Seven Years’ War
was settled by the Treaty of Hubertusburg on 15 February 1763. The British offered
France the choice of surrendering either its continental North American possessions east
of the Mississippi or the Caribbean islands of Guadeloupe and Martinique, which had
been occupied by the British. France chose to cede the former, but was able to negotiate
the retention of Saint Pierre and Miquelon, two small islands in the Gulf of St. Lawrence,
along with fishing rights in the area. They viewed the economic value of the Caribbean
islands’ sugar cane to be greater and easier to defend than the furs from the continent. ...
Answer: N/A
Prediction: able to negotiate the retention of Saint Pierre and Miquelon

This is an example of a challenging adversarial written question. The question asks for why
France give up no continental lands but the context shows that France give up continental
lands. Thus, there shouldn’t be an answer. However, the model fails to pick up the subtleties
of how the question is framed. Its answer seems to be quite reasonable for "why France
give up continental lands?". Thus, we suspect that the model is too insensitive to words
like "no" that flip the question or context completely. To improve the model, we suggest to
allow fine-tune of word vectors for such special words.

2. Example 2

Question: What is the expression used to denote a worst case complexity as expressed
by time taken?
Context: For example, consider the deterministic sorting algorithm quicksort. This
solves the problem of sorting a list of integers that is given as the input. The worst-case is
when the input is sorted or sorted in reverse order, and the algorithm takes time O(n2) for
this case. If we assume that all possible permutations of the input list are equally likely,
the average time taken for sorting is O(n log n). The best case occurs when each pivoting
divides the list in half, also needing O(n log n) time.
Answer: O(n2)
Prediction: N/A

This example shows one potential failure mode of our model. The "hint" from question is
worst-case and complexity. However, neither of these two words show up in the context at
its original form. "worst-case" becomes "worst case" and "complexity" is implied by the
underlying big O definition. On one hand, the exact match, our most effective approach
would fail completely. Additionally, Other mechanism would easily fail to infer the big
O definition if the training set does not contain enough time complexity related problem.
On the other hand, this problem would even be hard for one without a computer science
background to answer correctly. One way to better deal with this problem is to have better
matching algorithm that will catch slightly difference phrases.

Confirming our thoughts in Section 4.4 Fig. 3b, the question answering for certain interrogative
words such as "why" would most likely to cause failures. The above examples also shows that the
model experience failures when there is limited ’hint’ in the context that match the question well.

6 Conclusion

In this project, we present BiDAF Pro Max (BPM) for machine comprehension tasks. Based on
the default BiDAF in the starter code, we implement character embedding, include four other token
features with its corresponding embed layer, apply an iterative reattention mechanism and together
with these components form our final model BPM. And our model shows a good performance
on both dev and test dataset. All the added components show improvements in the results and
EM feature among all four token features has the greatest contribution. This also indicates that if
questions don’t contain words shown up in contexts or only have synonyms, EM might only have
little contribution to the performance. Moreover, using iterative reattention blocks could increase
the training time compared to BiDAF.

8

References

[1] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable
questions for SQuAD. In Association for Computational Linguistics (ACL), 2018.

[2] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional at-
tention flow for machine comprehension. arXiv preprint arXiv:1611.01603, 2016.

[3] Caiming Xiong, Victor Zhong, and Richard Socher. Dynamic coattention networks for ques-
tion answering. arXiv preprint arXiv:1611.01604, 2016.

[4] Shuohang Wang and Jing Jiang. Machine comprehension using match-lstm and answer pointer.
arXiv preprint arXiv:1608.07905, 2016.

[5] Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading wikipedia to answer
open-domain questions. arXiv preprint arXiv:1704.00051, 2017.

[6] Minghao Hu, Yuxing Peng, Zhen Huang, Xipeng Qiu, Furu Wei, and Ming Zhou. Reinforced
mnemonic reader for machine reading comprehension. arXiv preprint arXiv:1705.02798,
2017.

[7] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mohammad Norouzi,
and Quoc V Le. Qanet: Combining local convolution with global self-attention for reading
comprehension. arXiv preprint arXiv:1804.09541, 2018.

[8] Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional
attention flow for machine comprehension. CoRR, abs/1611.01603, 2016.

[9] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for
word representation. In Empirical Methods in Natural Language Processing (EMNLP), pages
1532–1543, 2014.

[10] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[11] Yoon Kim. Convolutional neural networks for sentence classification. CoRR, abs/1408.5882,
2014.

[12] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks. CoRR,
abs/1505.00387, 2015.

9

Figure 5: The detailed overview of Character Embed Layer Architecture.

Table 2: EM for questions with different interrogative words

interrogative words # questions # right prediction EM

What 3649 2803 76.82
Who 687 540 78.60
When 444 364 81.98
Which 213 161 75.59
How 561 416 74.15
Where 245 184 74.80
Why 86 50 58.14
Others. 65 40 61.64

A Appendix

A.1 QANet ablation study

As for the output layer, QANet use the concatenation operation where

p1 = softmax(W1[M0;M1]), p2 = softmax(W2[M0;M2]), (12)

p1, p2 represent the start and end position respectively. W1,W2 are trainable variables, M0,M1,M2

are the outputs from the three consecutive Encoder Blocks which share same weights. Inspired by
the character embed layer, we also decided to use addition as another choice that

p1 = softmax(W 1
0M0 +W 1

1M1)), p2 = softmax(W 2
0M0 +W 2

2M2), (13)

where W 1
0 ,W

1
1 ,W

2
0 ,W

2
2 are trainable variables.

A.2 Character Embed Layer Architecture

Please see Fig. 5 for detailed structure.

A.3 Details results about the interrogative words

10

	Introduction
	Related Work
	Approach
	Baseline model
	Character embedding
	Token feature and its embedding
	Iterative attention
	Other approaches
	Coattention Mechanism
	Conditioning end prediction on start prediction
	QANet

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Ablation Study
	Failure Examples

	Conclusion
	Appendix
	QANet ablation study
	Character Embed Layer Architecture
	Details results about the interrogative words

