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Abstract

Out-of-Domain Question Answering is a task that tests the ability of QA models
to generalize to domains they were not previously exposed to during train-time.
In this paper we conduct a survey of three methods for improving the out-of-
domain performance of a pre-trained DistilBERT model: Mixture of Experts, Data
Augmentation and Adversarial Training. We find that Adversarial Training is
not able to improve domain generalization. Through our experiments on data
augmentation and mixture of experts, we introduce BoBA, Battle of Berts with
Data Augmentation), a QA model that combines Data Augmentation and Mixture
of Experts. BoBA utilizes unfrozen, fine-tuned out-of-domain experts, along
with synonym replacement and random swapping data augmentation to achieve
a 5.17 point increase in F1 and 6.55 point increase in EM score over the baseline
DistilBERT. Our evaluation on a held-out test sets demonstrates strong domain
generalization with an F1 of 59.03 and EM of 40.69.
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2 Introduction

Modern NLP models are capable of learning vastly complex representations of languages. One
application of such complex language models are to Question-Answering (QA). QA tasks involve
providing a model with a passage, a question on that passage, and expects the model to highlight
the position of the answer to the question within the corpus. One of the most researched QA tasks
is the Stanford Question Answering Dataset challenge [1]. Since it’s release in 2018, SQuAD has
had many successful models improve on the state-of-the-art. Currently the best performing model
outperforms human question answering by nearly four points (F1 score).

In many real world applications, NLP models are required to generalize to unseen examples from
distributions different to the models’ training distribution. However, adapting models to these
distributions (known as domains) is difficult without directly fine tuning on them. In fact, many
models that outperform humans on SQuAD perform significantly poorly on unseen datasets, indicating
and inability to generalize beyond the training domain. Domain generalization is a measure of how
well a model performs on data sourced from domains exterior to those of it’s training data. It remains
an open and difficult problem in the world of NLP.

Our Contribution In this paper we introduce BoBA: Battle of BERTs with Data Augmentation.
Boba is a QA model trained on the SQuAD [1], NewsQA [2] and Natural Questions [3] datasets that
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generalize well to the DuoRC, RACE and Relation Extraction datasets. We achieve this by combining
two approaches that have been shown to improve domain generalization: Data Augmentation and
Mixture of Experts (MoE). BoBA improves the performance of the DistilBERT baseline by 5.17 F1
points and 6.55 EM points on the ood-validation set.

3 Related Work

DistilBERT One of the most widely utilized models for NLP tasks is the Bi-Directional Encoder
Representation from Transformers model (BERT) and it’s associated variants [4]. In particular,
DistilBERT [5] has become extremely popular for QA tasks. DistilBERT itself is obtained by
knowledge distillation. DistilBERT was constructed as a student model, and taught to learn the
behavior of the teacher model, which in this case was BERT. By learning the behavior of BERT
instead of the direct task that BERT is trained on DistilBERT is able to closely approximate the
behavior of BERT. [5] asserts that DistilBERT is able to retain 97% of BERT’s performance on
the GLUE benchmark [6] with 40% fewer parameters and 60% faster inference times. For our
experiments we use the DistilBERT model as both a baseline, and a general architecture to which we
apply the methods mentioned in the introduction.

Data Augmentation Domain generalization is a widespread task that applies to many other sub-
fields beyond just NLP. Augmenting training data through random transformations is well known to
help with domain generalization and general robustness in other fields such as Computer Vision/Audio
and Generative Modeling. In NLP, augmentation is often more complicated than it is for vision
or audio tasks due to the complexity and structure of language data. One of the most widely cited
methods for Data Augmentation for QA tasks is proposed in [7]. The authors propose a range of
simple techniques which we outline in detail in 4.5, and adapt in tackling the problem of domain
generalization. [7] also demonstrated that the strongest performance of augmented models is seen not
when the model is fine-tuned on the augmented data instead of being trained directly on it. We test
these conclusions in our experiments.

Another approach known to be highly beneficial to NLP tasks is pre-training. This is the process by
which a model is trained on some other task (in the case of DistilBERT, usually language modeling)
and using a different dataset, before being retrained on the actual training dataset for the task at hand.
[5] uses the student-teacher method to pre-train DistilBERT for a variety of downstream tasks. We
use one such pre-trained model in our experiments as detailed in 4.1

4 Approach

4.1 DistilBERT Baseline

We use a pre-trained DistilBERT for QA model as the atomic architectural component for all our
models. We downloaded the "distilbert-base-uncased" model from Hugging Face [5] in accordance
to the project specifications. The model consists of an encoder with six transformer blocks with 12
attention heads per attention layer.

4.2 Mixture of Experts

MoEs are a class of ensemble models that are widely used in domain generalization tasks. They
consist of individual models (experts) that are trained on each individual domain in the training data.
Then a gating function is trained on all the domains and learns to aggregate the outputs of each
individual expert conditioned on the input:

MoE(x) =
k∑

i=1

gi(x)fi(x), (1)

where k is the number of domains, fi is the i-th expert, and gi the gating output for the i-th expert. In
essence the outputs of each expert are combined using a weighted sum, where the conditioned gating
function produces the weights.

When building MoEs, there are two critical components: training the experts and finding the ideal
gating function. We trained two different types of experts: in-domain experts and out-domain experts.
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Figure 1: Architecture of a traditional Mixture of Experts

In-domain experts were trained on each of the in-domain training sets (one of SQuAD, NaturalQ
or NewsQA). Out-domain experts were trained on the entire in-domain training set (all of SQuAD,
NaturalQ and NewsQA) and then fine-tuned on one of the out-domain training sets (one of Race,
DuoRC, or Relation Extraction). We trained several models that used either the in-domain experts or
the out-domain experts in our experiments.

We experimented with multiple gating function architectures. We tried several different configurations
(detailed in the appendix) with a Multi-Layer Perceptron (MLP). Due to the complex nature of the
tokenized input passage and the associated attention masks, we also decided to use a significantly
larger gate: DistilBERT itself. This DistilBERT was modified to have an output vector of shape Rk

per example, where the i-th value is the weight gi(x) for the i-th expert’s output.

4.3 Adversarial Training

Another method to improve domain generalization we tried was Adversarial Training (AT) [8, 9].
AT uses a discriminator model that attempts to classify the embeddings generated by the encoder
model (DistilBERT) into one of the k domains in the training dataset. Both the discriminator and the
encoder’s QA head are trained simultaneously, and the encoder learns to produce domain invariant
features. For brevity, we will very briefly summarize the adversarial training procedure.

Formally, the discriminator must minimize the following loss function, Ladv =

− 1
N

∑K
k=1

∑Nk

i=1 logPϕ(l
(k)
i |h(k)

i ), where l
(k)
i is the domain category for the encoding h(k)

i .
The final loss for training the model is LQA + λLadv , where λ is a hyper-parameter for handling the
impact of adversarial loss, and LQA is the Categorical Cross Entropy specified in the project handout.

We adapted the codebase from [9] to use our training datasets and modified the model to use
DistilBERT instead. The results in Table 1 show that it was unable to outperform the baseline. Hence,
we did not pursue AT any further.

4.4 Data Augmentation

We adapt two approaches detailed in [7] to augment our training data: Synonym Replacement and
Random Swapping. Synonym replacement entails randomly choosing words from the sentence that
are not stop words, and then replacing them with one of their synonyms chosen at random. This
enables the model to learn representations of similar words to those in the corpus that may not have
been explicitly used otherwise, and in turn helps it become more robust to shifts in vocabulary. The
probability of swapping a word in a sentence is controlled by a parameter βsr.

Figure 2: An example of synonym replacement augmentation. Due to the nature of homonyms
(multi-meaning) the sentence may become nonsensical with very high βsr

.
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Random swapping entails repeatedly choosing two words in the sentence and swapping their positions.
This forces the model to pay more attention to vocabulary and word choice over the relative positioning
of the words. It can also make the model more robust to formatting issues often found in open-source
datasets. The probability of swapping a word in a sentence is controlled by a parameter γrs.

Figure 3: An example of random swapping augmentation. Very high γrs can result in extremely
difficult passages to parse.

Augmentation can be tricky because we must ensure the answer (part of the string containing the
answer) is unperturbed by augmentation and must accordingly update the start indices. We accomlpish
this by implementing an augmentation splitter that splits the answer(s) for a given passage from
the context, augments the context, and then reattaches the answer while updating the start index to
account for the changed context. This preserves the overall meaning of the text and relative position
of the answer while enabling augmentation.

4.5 Training and Hyper-parameter Tuning

We use Cross-Entropy Loss for our training:

L(ŷ, y) =

M∑
i

y(i) · log(ŷ(i)) (2)

We use the AdamW optimizer [10] to train two model outputs, the logits for the start index of
the answer, and the logits for the end index. Due to runtime and compute limitations, we hand-
tuned hyperparameters. Parameters that we tuned (excluding those related to the gating function
architecture) included βsr, γrs, learning rate (α), batch size and the number of training epochs.

We train the model using Early-Stopping where the model is evaluated regularly as it trains on a
validation set. The model with the best performance at all the evaluation points is then saved and
used for further evaluation/development.

5 Experiments

5.1 Datasets and Evaluation Method

Our model is trained primarily on the in-domain SQuAD, NewsQA, Natural Questions and finetuned
and evaluated on the out-of-domain DuoRC, RACE and Relation Extraction datasets. We performed
data augmentation on all six datasets. We use EM (Exact Match) and F1 scores to evaluate the
performance of the model on the available validation splits as required.

5.2 Single Domain Experts and the MLP Gate

Our first Mixture of Experts method involved training 3 experts, where each expert was trained on
a single in-domain training set. We then used an MLP gate to combine the results. Note that we
did not finetune on the ood-train set for fair comparison with the baseline. Table 1 shows how the
performance of the exeprts and the MoE is far lower than the baseline, indicating a likely unusable
approach to QA MoE models.

5.3 Training BoBA

The training pipeline for BoBA consists of several steps:

1. Train model M on the 3 in-domain train sets with data augmentation and validate on the 3
ood-train sets.
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Model In-Val F1 In-Val EM Out-Val F1 Out-Val EM
DistilBERT Baseline 70.35 54.54 46.86 30.89

Squad Only 75.67 61.93 42.83 27.49
NewsQA Only 55.54 38.25 38.85 25.92
NaturalQ Only 66.82 50.79 36.70 20.68
MoE with MLP 62.13 45.12 41.85 25.65

Adversarial Training 20.62 N/A 12.11 N/A

Table 1: Baseline results for DistilBERT experts trained on one of the in-domain training sets.

Model Batch Size Learning Rate Epochs γrs βsr

Race Only 64 8e-7 3 0.00 0.30
Relation Extraction Only 32 1e-5 3 0.40 0.90

Duorc Only 32 1e-5 3 0.50 0.70
DistilBERT Gate (in-domain) 16 3e-5 1 0.00 0.00

DistilBERT Gate (out-of-domain) 16 3e-6 1 0.90 0.80

Table 2: Hyperparameters for training each expert. We used different hyperparameters when training
the Gate on the in- and out-of- domain training sets. γrs and βsr are the random sequence percentage
and synonym replacement percentage, respectively.

2. Let expert Ei be M after finetuning and validating on the i-th ood-train set with data
augmentation.

3. Train MoE model B = f(E1, E2, E3) on the 3 in-domain train sets without augmentation
and validate on the 3 ood-train sets, where f is the gating function.

4. Finetune and validate B on the three ood-train sets with data augmentation.

5.3.1 To Freeze or not to Freeze

Our DistilBERT gating function has two varieties: i) one where we froze all but the last transformer
block of each expert (B1) and ii) one where the experts were completely unfroze (B2). We hypothe-
sized freezing the transformer blocks would preserve the learned integrity of the expert, so the expert
would remain exceptionally performant on its respective dataset. However, our experiments showed
that the unfrozen model severely outperformed the frozen variant. Because the experts are optimized
in sync with the gating function, we believe this may have created a more cohesive MoE compared to
the more discretized frozen experts.

Figure 4: The F1 and EM scores during the single epoch of training the gating function on the
in-domain training set with data augmentation.
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Model Out-Val F1 Out-Val EM
DistilBERT Baseline* 46.86 30.89

Unfinetuned Expert (M ) 49.54 34.55
Race Only (E1) 49.50 34.55

Relation Extraction Only (E2) 50.06 35.86
Duorc Only (E3) 48.91 32.98

MoE with Frozen Experts 43.21 26.71
MoE with Unfrozen Experts* 50.14 36.65
MoE with Unfrozen Experts 52.03 37.44

Table 3: The performance of the unfinetuned expert, the three experts, and two gating function
variants of our MoE model. The astrix * denotes no data augmentation was used.

5.3.2 Experimental Details

Each of the experts E1, E2, E3 was trained on all three augmented in-domain train sets. Then, each
expert was finetuned on one of the augmented ood-train sets. We validated the expert only on the
dataset it was being finetuned on, so it would become an expert at its own dataset. Table 2 shows
the hyperparameters for BoBA’s experts. Through experimentation, we found that high values of
γrs and βsr worked well for Race and DuoRC, but not for Relation Extraction. This may be due to
the latter having a significantly narrower domain (in terms of domain, content and structure) than
the former two datasets. As a result when excess augmentation significantly alters the structure of
the dataset, the learned representations could no longer be representative of the domain, and lead
to decreasing performance. The unfinetuned expert (M ) and the MoE gate were trained with the
same hyperparameters as the DistilBERT baseline: batch-size of 16, learning rate of 3e-5. We trained
the gating function for only one epoch, because validation performance decreased due to overfitting.
Figure 5.3 shows how the best performance was acheived relatively early in the epoch.

5.4 Baseline Model

Our baseline model is the vanilla DistilBERT for Question Answering trained on the in-domain
train dataset for 3 epochs with learning rate 3e-5 with dropout and cross entropy loss. For more
information refer to the description of DistilBERT [5, 11, 4] and the description of the baseline model
in the project instructions.

5.5 Results

BoBA achieves F1: 59.03, EM: 40.69 on the test set and F1=52.03, EM=37.44 on the validation
set. We were happy to see an increase of 7 F1 points, because this implies our model was able to
generalize well to unseen data. We were surprised for the substantial increase, because we worried
we had potentially overfit the model’s hyperparameters to the validation set after extensive tuning.

Table 3 shows the scores of the various experts and MoE variants. The data augmentation (DA)
evidently helped the model become more robust, as MoE with DA outperformed MoE without DA
by almost 2.0 F1 points. Furthermore, our experiments show DA can create robust experts. We also
see that unfrozen MoE’s performance show us how how the model’s performance is amplified when
gating function is tuned in sync with the experts. We were surprised to learn that the training the
gating function and the experts are not independent processes, as we assumed an unfrozen model
would simply return to baseline performance.

6 Analysis

We will qualitatively analyze of our model to understand its improvement over the baseline. Figure 5
shows some sample outputs from our model for reference. We found that the model’s predictions
could be clustered into three significant groups: exact matches, overlapping matches, and complete
misses. Overlapping matches are model predictions that contain the ground truth answer or are
contained in the ground truth answer without being exact matches. Complete misses are predictions
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Figure 5: Sample model outputs.

that contain no overlapping text with the answer. We plotted the relative frequency of each type of
miss in Figure 6.

Figure 6: Match type of model predictions.

A significant amount of answers are overlapping (31.5%) but not exact matches. This indicates the
model’s utility as a QA system is stronger than the EM score might indicate at first glance as indicated
by some sample overlapping answers in Figure 7. To investigate potential causes for this we plotted a
histogram of answer lengths for both overlapping and missed answers in Figures 8 and Figures 9.

Figure 7: Sample overlapping answers.

For overlapping answers (Figure 8), we clearly see a different distribution in the answer lengths. The
distribution of predicted answers is skewed right (longer tail) than the distribution for ground truth
answers. We also see that the most common answer length is shifted further right (around 10) when
compared to that of the ground truth (around 0-3). The differing distribution shape is also evident in
the histogram of complete misses (Figure 9, where the same skewed tail, along with the right-shifted
distribution is present. This implies our model is failing at finding the shortest correct answer as
it appears to prefer guessing longer answers over shorter answers. Going forward, reducing this
error may require the use of a length penalty through a custom loss function that penalizes non-exact
matches that are longer more than those that are shorter.

7 Conclusion

In this project we developed BoBA, which uses two domain generalization techniques: data augmen-
tation and mixture of experts. The combination of random swapping and synonym replacement along
with unfrozen, fine-tuned experts and a DistilBERT gating function provided us with a 5.17 point
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Figure 8: Answer-length histogram for over-
lapping answers in the OOD validation set.

Figure 9: Answer-length histogram for com-
plete misses in the OOD validation set.

increase in F1 score and 6.55 point increase in EM score. On an unseen test-set our model reached an
F1 of 59.03 and an EM of 40.69 indicating strong generalization to the new domain.

7.1 Future Work

We did find many shortcomings with our approaches. We found that data augmentation is difficult to
utilize when dealing with some of the fine-tune datasets, and the relevant augmentation parameters
must be carefully fine-tuned on a case-by-case basis. Furthermore, hyper-parameters (largely learning
rate and batch size) have a significant impact on the performance of the mode. While we performed
the relevant tuning, we were not entirely thorough in our efforts due to our computational limitations.
Going forward it would be prudent to perform this via a comprehensive grid-search. Furthermore,
we felt that our exploration of the effects of layer freezing was incomplete. We were unable to train
models that had different numbers of frozen transformer blocks, and as a result we felt that we were
not utilizing our experts as efficiently as possible. Conducting an extensive search on this front would
also provide us with valuable insights on improving the domain generalization of BoBA. We also
neglected exploring other methods of augmentation such as random deletion and insertion as well as
back-translation. We hope to explore these avenues in the future.
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