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Abstract

The goal of this research is to understand the optimal implementation of domain
adversarial training for robust question answering. While past studies have im-
plemented adversarial training for this problem, we postulate that the model may
benefit from learning both domain-invariant and domain-specific features. We
investigate whether partially rather than perfectly domain-independent features
in domain adversarial training produces Q&A models with high accuracy while
still remaining robust to domain shifts. We create partially independent models by
only feeding part of the Q&A model’s representation into the discriminator. We
also explored further model improvements leveraging focal loss to address class
imbalance issues in our training data and Wasserstein distance as an alternative
measure to adversarially train the discriminator. We find that developing features
with partial domain independence successfully improves the model’s performance
on unseen data. Our model achieves EM = 41.95 and F1 = 60.096 scores on the
OOD test set.

1 Key Information to include

* TA mentor: Yian Zhang

* We have no external collaborators or mentors and are not using the project for any other
class.

2 Introduction

Large language models such as BERT [[1] have shown to achieve close to human-like performance
and understanding when fine-tuned on large datasets. However, when fine-tuned only on small or low-
resource data, they perform significantly worse. Since the distribution of training data is rarely, if ever,
seen in the real world, the failure to generalize poses a key problem to these systems achieving human-
like performance. Moreover, increasing evidence shows that this failure to generalize understanding to
out-domain or low-resource data is likely due models learning brittle, distribution-specific correlations

[2]].

One of the best proxies for understanding, both for humans and language models, is the ability to
answer questions. Hence, we focus on improving the question answering models to generalize like
humans. Specifically, we build a cloze Q&A built on DistilBERT [3]] that takes as input (context,
question) pairs and outputs answers to the question based on the context and adapts to unseen
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domains with only a few training examples.

As such, we tackle the issue of brittleness and domain-dependence in the features derived by
DistilBERT. To do so, we employ Domain Adversarial Training, which is further described in
our Approach, which has been shown to improve out-of-domain generalization [4]. Building on
their work, we show that partial domain independence, i.e. a mixture of domain-invariant and
domain-specific features as described in our Approach, leads to improvement.

Moreover, we explore Wasserstein distance in lieu of KL divergence used by Lee et al. and find that
it improves performance.

Lastly, to address the class imbalance between in-domain and out-of-domain training examples,
in lieu of cross-entropy loss, we explore Focal Loss, a loss that varies weighting according to
classification error by class, for the discriminator [5]].

3 Related Work

This section helps the reader understand the research context of your work, by providing an overview
of existing work in the area.

Adapting models to new domains without finetuning is a challenging problem in deep learning.
One way to improve a model’s out-of-domain performance is through domain adversarial
training. In their paper, "Domain-agnostic Question-Answering with Adversarial Training",
Lee, et. al.,, 2019 [4] utilize an adversarial training framework for domain generalization in
Question Answering (QA) tasks. In order to produce domain-invariant features, Lee, et. al.
implement an adversarial training approach where in addition to the classifier component (the
QA model), a discriminator is tasked to identify the domain of the data, and the classification
component tries to extract features that maximize the loss of the discriminator by creating
indistinguishable hidden representations. If the QA model can project the question and passage
into an embedding space where the discriminator cannot tell the difference between embeddings
from different domains, they assume the QA model learns domain-invariant feature representation [4]].

We reference this paper as our main approach to improve the performance of DistiIBERT model on
the RobustQA task: in addition to our baseline DistiIBERT model for QA, we implemented our own
original discriminator for domain identification, and trained both with domain adversarial training.

However, in some datasets in both validation and testing, the performance of the model is degraded
by Lee et. al’s proposed method [4]. However, the paper offers no potential reasons for this poorer
performance, and so we do not know how this could extend to other datasets or language models.
The inconsistent improvement seen across domains suggests that completely domain-independent
representations may not provide the best results. We hence explore partial domain independence by
holding out certain features from the discriminator. As such, while some features can be trained to be
domain-invariant, others can be trained to recognize the domain and task and appropriately select
domain-specific features that improve prediction.

Furthermore, we note the similarity of the DANN (Domain Adversarial Neural Network) approach
proposed by Lee et al. to a GAN, wherein the DistilBERT featurizer is analogous to a generator.
Following the advancements in GANs, we apply Arjovsky et al’s Wasserstein GAN [6] algorithm to a
DANN. Specifically, Arjovsky et al. propose replacing the KL divergence used in a GAN with Earth
Mover distance, i.e. Wasserstein-1, and show improved training stability, reduced mode collapse,
and higher quality outputs. We apply it to this supervised context by replacing KL divergence with
Wasserstein-1 distance and also find improved generalization.

Finally, given the classification problem introduced by the DANN, the problem of class imbalance
becomes pertinent as out-of-domain examples are vastly underrepresented (by definition). Lin et



al. show Focal Loss [5] addresses the class imbalance problem by applying a modulating term to
cross-entropy loss to focus the loss function on hard, misclassified examples. Given class imbalance,
this is likely to be rarer classes and hence focal loss weights classification of all classes more equally.
Since we face significant class imbalance, we explore the replacement of cross-entropy loss with
focal loss for the discriminator.

4 Approach

This section details your approach(es) to the problem. For example, this is where you describe the
architecture of your neural network(s), and any other key methods or algorithms.

4.1 Baseline

As described in the default final project handout, the baseline model used was a DistilBERT QA
model (named for being a "distilled" version of the BERT model). Preprocessing and chunking are
done as described.

4.2 Domain Adversarial Training

We implemented our QA model with domain adversarial training using a very similar approach to
Lee, et. al., 2019 [4]].
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Figure 1: Training procedure for learning domain-invariant feature representations. The discriminator
is trained to predict domain of the dataset based on the output [CLS] token. The model classifier
predicts the appropriate answer while fooling the discriminator. Taken from Lee et. al 2019. [4]

We added a discriminator D which can be mathematically be expressed as
D = W3 * (RBLU(WQ * (ReLU(W1 * h + b1)) + b2)) + bg,

where h is the [CLS] token from the last hidden layer W5, W5, and W35 are weight matrices and by,
bs, and b3 are bias terms for the linear layers.

D trains to minimize the multi-class cross-entropy loss, Lp, of domain category prediction given
h, the first hidden representation of both question and passage (which can also be thought of as the
extracted features). We then added L4, which we first set as the Kullback-Leibler (KL) divergence
between uniform distribution over K classes and the discriminator’s prediction, to the QA model’s



loss so that the QA model trains to confuse the discriminator and hopefully develops domain-invariant
features. KL divergence, like cross-entropy loss, is a tool to measure the difference between two
distributions. The final loss for QA model is Lg 4 + ALgyq, Where A is a hyper-parameter controlling
the importance of the adversarial loss. In our experiments, we optimize both the QA model and
discriminator at the same time. We experiment to find the optimal A with L, using KL divergence
and L p using cross-entropy loss.

4.3 Partial Domain Independence

Based on results from existing literature, including Lee, et. al., 2019 [4] and Zhu, 2021 [7],
we postulate that the model may benefit from learning both domain-invariant and domain-specific
features. To investigate whether partially rather than perfectly domain-independent features in
domain adversarial training produces Q&A models with high accuracy while still remaining robust
to domain shifts, we create partially independent models by only feeding part of the Q&A model’s
representation & into the discriminator. We control this with hyperparameter 3, which dictates the
proportion of features of / that are trained to be domain-invariant, while 1 — /5 of h’s features remain
domain-specific. Our entire ideation and implementation of partial domain independence is original.
We experiment to find optimal 3, assuming we have optimal A.

4.4 Focal Loss

Our training datasets have a large class imbalance between in-domain and out-of-domain classes,
as we have 50,000 training samples for each in-domain dataset and only 127 training samples for
each out-of-domain dataset. In order to address this imbalance, we refer to Lin, et. al., 2018’s [5]]
work and replace our QA model’s cross-entropy loss with Lin, et. al.’s focal loss implementation [S§]].
Starting from cross entropy (CE) loss for binary classification:

CE(p.y) — log(p) ify=1
0, y) =
Py —log(l — p) otherwise.

for notational convenience, they define p;:

P ify=1
= .
1 —p otherwise,

and rewrite CE(p, y) = CE(p;) = log(p; ). They then introduce a weighting factor «; and a modulating
factor (1 — p;)” to the cross entropy loss to get the following equation for focal loss (FE):

FE(pt) = —ai(1 — pi)” log(pe)-

Focal loss allows the loss function to apply more focus on difficult, misclassified examples. We build
off of Lin, et. al.’s results to find optimal « and -y, assuming we have optimal A and .

4.5 Wasserstein Distance

We explored model improvements by replacing the Kullback-Leiber (KL) divergence in the L, term
of our loss expression with a Wasserstein distance measure to adversarially train the discriminator
function. At a high level, the Wasserstein distance is an earth-mover distance metric between two
probability distributions, defined as:

W(P,,P,)= inf E. . ~[llz—
(Pr, Py) '}«EHI(II%D,-,]P’Q) @)~y l1T = yll]

where II(P,, Py) is the set of all joint distributions over x and y such that the marginal distributions
are equal to P, and P,.

In this case, the predicted domain from the discriminator is representative of the source domain and a
uniform distribution is the target domain. We leveraged an existing implementation [9] of calculating



Wasserstein distance and integrated it into our loss function. Similar to how it operates in W-GANSs,
we expected Wasserstein distance to provide more information in the training of the discriminator
and ’generator’. It also had the advantage of being able to operate on the logits directly.

S Experiments

5.1 Data

We use three in-domain datasets: the Stanford Question Answering Dataset (SQuAD) [10], Natural
Questions [[11], and NewsQA [12], all pre-processed in the same format as SQuAD. In addition, we
use three out-of-domain datasets: DuoRC [[13], RACE [14], and RelationExtraction [15]].

Dataset Question Source Passage Source Train dev Test

in-domain datasets

SQuAD [5] Crowdsourced Wikipedia 50000 10,507 -

NewsQA [7] Crowdsourced News articles 50000 4,212 -

Natural Questions [6] Search logs Wikipedia 50000 12,836 -
oo-domain datasets

DuoRC [9] Crowdsourced Movie reviews 127 126 1248

RACE [10] Teachers Examinations 127 128 419

RelationExtraction [11]  Synthetic Wikipedia 127 128 2693

Please refer to the default project handout for the Robust QA track [2] for further detail.

5.2 Evaluation method

The primary evaluation metrics we used for the milestone were EM and F1 score. EM stands for
’Exact Match’ and, as the term alludes, measures whether a model’s prediction exactly matches the
characters of the true answer. The reported EM is the average over individual example scores. F1 is
a more common metric for classification problems—the harmonic mean of precision and recall. In
contrast to exact match (an all-or-nothing approach), the precision and recall are calculated based on
the number of shared words in the prediction compared to the ground truth.

5.3 Experimental details

We began by training the provided baseline model using the default hyperparameters for the classi-
fication component, namely with 3 epochs, a constant learning rate of 3e-05, and batch size of 16.
Learning rate and batch size were kept constant throughout our experiments.

Following this, we added a discriminator component that takes the first hidden layer of the model and
predicts domain class. The discriminator was trained on a multi-class cross entropy loss function.
Domains of datasets were one-hot encoded based on their type (Wikipedia, News Articles, Movie
Reviews, Examinations). We assess three lambda values: A = .01, .005, .05, where A is the
hyperparameter controlling the importance of the discriminator’s adversarial loss.

We initially used stochastic gradient descent (SGD) as the optimizer of our discriminator, but changed
the optimizer to Adam.

Then, we implemented partial domain independence by feeding only part of the Q&A model’s
representation h into the discriminator. We assess beta values: 8 = 0.85, 0.90, 0.95, 0.99, where 3
is the hyperparameter controlling what proportion of /’s features are trained to be domain-invariant.

Then, we began experimenting with focal loss, Wasserstein distance, and our samplers both separately
and in combination. We assess various combinations of gamma and alpha values and sampler types:



v = 1.0, 2.0, 3.0, a = 0, 0.25, sampler = random (default) or weighted. We also experimented with
lambda again with values: A = 0.01, 0.05.

Training and evaluation time was relatively consistent across models. Training typically took between
2-3 hours (for three epochs) and evaluation took less than 5 minutes.

5.4 Results

Unless specified otherwise, the provided EM and F1 scores are for the dev set.

5.4.1 Adversarial Training: Lambda, A

Model lambda | EM F1
Baseline n/a 30.63 | 47.72
Adpv. training with SGD 0.01 31.152 | 46.896
Adyv. training with Adam | 0.01 35.079 | 49.321
Adpy. training with Adam | 0.05 31.94 | 46.40
Ady. training with Adam | 0.005 3246 | 4835

Optimal Lambda Tradeoff

BEM HF1
50
40
30
20
10
0

0 0.005 0.01 0.05

Lambda

We see an increase in performance on the dev set with the introduction of adversarial training.
Interestingly, we see that there’s a balance to be maintained for our lambda value, in that giving too
great of a significance to the adversarial training loss component of our final loss reduces overall
performance on out-of-domain datasets (lambda = 0.05), as does giving too little (lambda = 0.005).
We see that the optimal lambda for adversarial training with the Adam optimizer is A = 0.01.

For all the following sections and results, the model undergoes domain adversarial training with the
Adam optimizer.

5.4.2 Partial Domain-Invariance: Beta, 3

For this section, A = 0.01

beta EM F1

0.85 | 28.53 | 45.90
0.90 | 30.89 | 46.55
0.95 | 34.29 | 49.28
099 | 3141 | 47.23
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Among the experiments conducted to finetune our beta hyperparameter, we see optimal performance
for beta = 0.95 with EM = 34.89 and F1 = 49.28. Unexpectedly, the experiments run with the beta
hyperparameter produce slightly lower scores than the previous results without (equivalent to beta=1).
However, the fact that our scores are significantly lower for beta = 0.99 than they are for beta=0.95
indicate that our approach with partial domain invariance is still successful.

5.4.3 Focal Loss, Wasserstein, Sampler, Lambda, Beta

QA Model’s Loss | Adv. Train Loss | sampler | lambda | beta | gamma | alpha | EM F1
Focal Loss KL Divergence | Random 0.01 0.90 0.3 0 30.63 | 45.69
Focal Loss KL Divergence | Random 0.01 0.90 1.0 0 30.63 | 47.49
Focal Loss KL Divergence | Random 0.01 0.90 2.0 0 31.68 | 47.33
Focal Loss KL Divergence | Random 0.01 0.95 2.0 0.25 | 33.77 | 48.92
Focal Loss KL Divergence | Random 0.01 0.90 3.0 0 31.94 | 47.01

CE Loss Wasserstein Random 0.05 1.00 n/a n/a | 32.72 | 49.24
CE Loss Wasserstein Weighted 0.01 0.95 n/a n/a | 31.94 | 48.49
CE Loss KL Divergence | Weighted | 0.01 0.95 n/a n/a | 29.32 | 43.78
Focal Loss Wasserstein Random 0.01 0.95 2.0 0.25 | 35.08 | 51.16

Our model that combined focal loss and Wasserstein distance with hyperparameters lambda = 0.01,
beta = 0.95, gamma = 2.0, alpha = 0.25, and random sampling performed best with scores EM =
35.08 and F1 = 51.16 on the out-of-domain validation set. The early results for models with only
focal loss or only Wasserstein were somewhat disappointing considering that focal loss was meant to
specifically address class imbalance and Wasserstein was used for its theoretical advantages in domain
adaptation: its gradient property and promising generalization bound [16], yet we saw no significant
increase in performance. However, we see that combining the two produced improved scores on the
dev set. This model achieved scores EM = 41.789 and F1 = 60.069 on the out-of-domain test set.

6 Analysis

We can see significant improvement in performance between the DistilBERT baseline and our model
with domain adversarial training. For example, let’s observe the following example from the RACE
set.

Context: "...The teaching arrangement filled me with fear. I was to divide the class of twenty-four
boys, aged from seven to thirteen, into three groups and teach them all subjects—including art, football,
cricket and so on—in turn at three different levels. Actually, I was depressed at the thought of teaching
algebra and geometry—two subjects in which I had been rather weak at school..."

Question: Which subjects was the writer poor at?

Correct Answer: algebra and geometry

DistilBERT: art, football, cricket and so on

Adversarial Model: algebra and geometry



Question: Where must they go to attach the ArcNet?
Correct Answer: Cape Canaveral

DistilBERT: no K

Adversarial Model: Cape Canaveral

Context: "The authorities discover the scientists’ project, and arrest them. Miles escapes by
disguising himself as a robot, and goes to work as a butler in the house of socialite Luna Schlosser
(Diane Keaton). When Luna decides to have his head replaced with something more desthetically
pleasing,Miles reveals his true identity to her, whereupon Luna threatens to give Miles to the
authorities. In response, he kidnaps her and goes on the run, searching for the Aries Project.and
Luna fall in love, but Miles is captured and brainwashed into becoming a complacent member of the
society, while Luna joins the rebellion. The rebels kidnap Miles and perform reverse-brainwashing,
whereupon he remembers his past and joins their efforts. Miles becomes jealous when he catches
Luna kissing the rebel leader, Erno Windt (John Beck), and she tells him that she believes in free love."

Question: Who catches onto the scientists’ project?
Correct: authorities

DistilBERT: Miles becomes jealous when he catches Luna
Adversarial Model: The authorities

We see that our adversarial model is able to correctly identify the subjects with which the writer
struggles while the baseline model simply returns some subjects it identifies. This is a recurring
trend in that the baseline tends to return some answer that matches the type of the answer but fails
to identify the correct answer. The baseline also tends to fail to remove unnecessary punctuation.
The adversarial model’s ability to generalize seems to lead to greater accuracy in identifying specific
person, place, or object.

7 Conclusion

In summary, we propose an optimal implementation of domain adversarial training for robust question
answering. This implementation uses a DANN [4] with partial domain independence for the features
and Wasserstein distance and focal loss used for the discriminator with the following hyperparameters
A =0.01, a = 0.25, 8 = 0.95, and v = 2.0. Compared to our baseline model trained without an
adversarial component, adding the discriminator improved performance in terms of F1-Score and
Exact Match (EM). Developing features with partial domain independence also improved the model’s
performance on unseen data.

While our dataset was heavily imbalanced, it remains unclear whether focal loss improved overall
performance. Due to time limitations, we were unable to fully explore the utility of the alpha
parameter, for example, which could have resulted in significant performance changes.

While several combinations of hyperparameters were tested, a more extensive and organized hyper-
parameter search needs to be conducted to make conclusions on the utility of Wasserstein distance
and focal loss. Future directions of this work can include experimenting with various training times,
iterations, and learning rates on this same model and further finetune our hyperparameters. In addi-
tion, we could explore other current methods of improving out-of-domain performance, including
mixure-of-experts, few shot learning, meta learning.
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