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Abstract

Following the release of the Stanford Question Answering Dataset (SQuAD), rapid
innovations have been made in the realm of question answering. The dataset,
developed through crowdsourcing, provides a passage and an associated question.
The purpose of the dataset is to train deep learning models that can comprehend
the provided passage and answer the associated question solely using information
found within the passage. To achieve better results than the baseline model, we
will augment the algorithm with character-level embeddings to help handle out-of-
vocabulary words. More importantly, character-level embeddings are key building
block for implementing a self-attention mechanism, which is going to be the main
part of our final model. Additionally, we utilize a use a gated recurrent unit (GRU)
instead of LSTM to help solve vanishing gradient problems. Although we have
yet to fully implement the self-attention mechanism, our intermediate model is
already outperforming the baseline, which shows promise for the future. In terms
of long-horizon tweaks post self-attention implementation, we are also planning
to experiment with hyperparameter tuning, data augmentation, end prediction
conditioning, as well as further exploring current research centered around these
mechanisms.

1 Key Information to include

* TA mentor: Kathy Yu
¢ External collaborators (if no, indicate “No”"): No
¢ External mentor (if no, indicate “No”’): No

* Sharing project (if no, indicate “No”): No

2 Introduction

The introduction explains the problem, why it’s difficult, interesting, or important, how and why
current methods succeed/fail at the problem, and explains the key ideas of your approach and results.
Though an introduction covers similar material as an abstract, the introduction gives more space for
motivation, detail, references to existing work, and to capture the reader’s interest.

In the recent decades, previously foreign phrases such as "artificial intelligence," "machine learning,"
and "neural networks" have become household buzzwords. This rise in power and implementation
can be seen permeating throughout all aspects of daily life, even something so characteristically
"human" as language itself. Whether it’s through increasingly convincing voice assistants such
as Siri or changing the landscape of customer service with automated chatbots, the uses are truly
endless. However, the limited sizes of currently available datasets limits the complexity of models
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that researchers are able to analyze. The recently released Stanford Question Answering dataset
(SQuAD) addresses the weakness of the previous datasets. It is orders of magnitude larger than all
previous hand-annotated datasets, and is challenging: all the answers can be arbitrary spans within
context paragraphs rather than a limited set of multiple choices.

Question: Why was Tesla returned to Gospic?

Context paragraph: On 24 March 1879, Tesla was returned to Gospic under police guard
for not having a residence permit. On 17 April 1879, Milutin Tesla died at the age of 60 after
contracting an unspecified illness (although some sources say that he died of a stroke). During
that year, Tesla taught a large class of students in his old school, Higher Real Gymnasium, in
Gospic.

Answer: not having a residence permit

Figure 1: Example of a question-answering task; the blue is where the model predicted the answer to
lie based on the question and context paragraph.

For reading comprehension style question answering, a passage and related question are given, the
task is then to predict an answer to the prompted question based on information found in in the
context paragraph. The SQuAD dataset further constrains the "correct” answer to be a continuous
sub-span of the context passage. The sub-span answer often includes non-entities and can be much
longer phrases. This setup challenges the researcher to understand and reason about not only the
question but also the context passage in order to infer the answer

Although it may seem like an arbitrary online challenge, this question-answering problem (e.x. Figure
1) that SQuAD presents has important implications. The end goal, like many other AI/ML projects, is
to create a model that not only replaces the need for a human, but eventually outperforms—whether in
speed, accuracy, or even both—what an human is capable of. The applications of such a model are
endless: education, service, research, etc.

In out project, we explore several neural network architectures for the SQuAD task. We begin with
the Stanford-provided baseline model that has basic encoding, attention and decoding layer, upon
which we made incremental tweaks based on analyzing what the baseline model did and did not do
well. Specifically, we decided to augment the baseline model with character-level embeddings and
tweaking the attention layer to give the model more specificity within the context paragraph.

3 Related Work

For the majority of this project, we were primarily inspired by a 2017 Microsoft Research Asia paper
[2]. Their approach to the question-answering problem was a propriety model dubbed "R-NET"; the
structural schematic is illustrate in Figure 2 below. Their custom model consisted of four main parts:
"1) the recurrent network encoder to build representation for questions and passages separately, 2)
the gated matching layer to match the question and passage, 3) the self-matching layer to aggregate
information from the whole passage, and 4) the pointer-network based answer boundary prediction
layer" [2].

The current scores of the 2017 R-NET paper achieved scores of (72.3 EM, 80.7 F1) and (76.9 EM,
84.0 F1) for the single and ensemble model respectively [2].

At an intuitive level, R-NET performs reading comprehension in a way that is pretty similar to how an
average human would: by ‘reading’ (applying a Recurrent Neural Network) the text multiple times,
and ‘fine-tuning’ (using Attention) the vectorial representations of the terms better and better in each
iteration.
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Figure 2: Structural overview of the R-NET model constructed by the Microsoft Research Asian team.

Additionally, within our model, we also implemented a character-level embedding layer. Our main
inspiration for this augmentation came from Seo’s University of Washington paper [3]. In this paper,
the model greatly resembles the baseline model provided, however a character-level embedding layer
(shown in pink in Figure 3 below) was added before the word-level embedding layer.
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Figure 3: Flow Model used by Seo’s University of Washington team. The added character-level
embedding layer is shown in pink.

This character embedding layer maps each word to a high-dimensional vector space. Characters are
embedded into vectors, which can be considered as 1D inputs to a Convolutional Neural Networks
(CNN), and whose size is the input channel size of the CNN. The outputs of the CNN are max-pooled
over the entire width to obtain a fixed-size vector for each word. In plain English, character-level
embeddings find numeric representation of words by looking at their character-level compositions.
Thus, character-level embeddings provide several advantages: ability to handle out-of-vocabulary



words, ability to handle infrequently used words and reducing vector sizes, which reduces model
complexity and improves speed.

4 Approach

For this project, our main source of comparison of performance is the provided baseline model
based on Bidirectional Attention Flow (BiDAF) [1]. However, this model doesn’t does not include a
character-level embedding layer. thus, as a first step, we implemented such a layer to help handle
out-of-vocabulary words. More importantly, character-level embeddings are key building block for
implementing self-attention, which is going to be the main part of our final model. Specifically, we
will be emulating our central Microsoft paper’s R-NET construction, which utilizes a self-matching
attention mechanism [2].

Given time and expertise restraints, we decided to focus on what we thought was the most impactful
improvement made by the Microsoft Research Asia team, which was the self-matching attention layer.
Attention in Neural Networks is modeled after the way humans focus on a particular subset of their
sensory input, and tune-out the rest. "Self-matching" in this case means that given a text length n each
hidden state h; attends to all the hidden states, hq, ..., h,, including itself. In essence, by directly
matching the question-aware passage representation against itself, we can incorporate the passage
context necessary to infer the answer of a potential query. The main idea of self-attention is that the
query vector is from the same set as the set of value vectors. Thus, by introducing a self-matching
attention layer, 3.

Specifically, we tried to emulate what the Microsoft Research Asian team did, which was dynamically
collect evidence from the whole passage for words in passage and encodes the evidence relevant to
the current passage word and its matching question information into the passage representation h! :

h{ = BiRNN (h;_y, [vf, ¢i]) (1)

where ¢, = att (v”, v’ is an attention-pooling vector of the whole passage (v”) :

st = vT tanh (vaf + vatp) ()
al = exp (sf) /2?21 exp (s?) 3)
¢ =X alvl (4)

Additionally, we used a gated recurrent unit (GRU) instead of long short-term memory (LSTM) to
solve the vanishing gradient problem faced by standard recurrent neural networks (RNN). Although
GRUs share many properties of LSTM-both algorithms use a gating mechanism to control the
memorization process-GRU are typically less complex and significantly faster to compute [4]. GRU
uses two gates: the update gate and the reset gate whereas LSTM uses three: the input gate, the forget
gate, and the output gate. Unlike LSTM, GRU does not have an output gate and combines the input
and the forget gate into a single update gate. To motivate this change, we reference several papers
that have already compared and proven the similar relative performance of GRU and LSTM [5].

Finally, we also changed the batch size from 64 to 32, as increased batch size can decrease general-
ization ability of model. Thus, a slightly smaller batch size would not exploit vectorization to as full
of an extent, but may perform better.

S Experiments
5.1 Data
We will be using the official SQuAD 2.0 dataset, which contains the following splits:

* train (129,941 examples): All taken from the official SQuAD 2.0 training set.
* dev (6078 examples): Roughly half of the official dev set, randomly selected.



* test (5915 examples): The remaining examples from the official dev set, plus hand-labeled
examples

Like the project handout states, The SQuAD dataset contains many (context, question, answer) triples.
Each context (sometimes called a passage, paragraph or document in other papers) is an excerpt from
Wikipedia. The guestion (sometimes called a query in other papers) is the question to be answered
based on the context. The answer is a span (i.e. excerpt of text) from the context.

5.2 Evaluation method

Like the default model, we will utilize two metrics to evaluate model performance of SQuAD: Exact
Match (EM) and F1 score. EM measures the percentage of the prediction that matches one of the
ground truth answers exactly. F1 measures the overlap between the prediction and ground truth
answers which takes the maximum F1 over all of the ground truth answers.

5.3 Experimental details

The main tweak we made to the experimental process was changing the batch size from 64 to 32, as
increased batch size can decrease generalization ability of model. Thus, a slightly smaller batch size
would not exploit vectorization to as full of an extent, but may perform better.

With each incremental edit, we also played around with slightly varying learning rates but these
changes ultimately yielded negligible results in performance.

5.4 Results

For our baseline model, we achieved scores of:
EM :57.08 )
F1:60.42 (6)

During our model-curation process, we managed to achieve the following dev scores:

EM :59.14 @)

F1:62.51 ®)
We also had the following scores on test:

EM :59.17 )

F1:62.48 (10)

Our scores are about as expected. Given that we only implemented a sub-portion of the broader
R-NET model, it makes sense that our scores are still significantly lower than their final scores.
However, our augmentations to the model showed promise as the scores did improve from the
baseline, as expected (and as hoped).

6 Analysis

After testing our model, we realized that many of the incorrect answers seemed to follow three main
patterns.

First, we noticed that our model is overemphasizing the proximity of the keywords in the question.
Although the model answer contains an albeit rephrased correct answer, which is a product of the
self-attention layer learning the entire context of the paragraph, it also contains irrelevant text. We
might find this to be the case due to the self-attention layer itself, which may have falsely given
weights to certain contexts within the passage.

Second, consider the following example:



Context: '"Politically, the system of government created by Kublai Khan was the product
of a compromise between Mongolian patrimonial feudalism and the traditional Chinese
autocratic-bureaucratic system. Nevertheless, socially the educated Chinese elite were in
general not given the degree of esteem that they had been accorded previously under native
Chinese dynasties. Although the traditional Chinese elite were not given their share of power,
the Mongols and the Semuren (various allied groups from Central Asia and the western end of
the empire) largely remained strangers to the mainstream Chinese culture, and this dichotomy
gave the Yuan regime a somewhat strong colonial coloration. The unequal treatment is possibly
due to the fear of transferring power to the ethnic Chinese under their rule. The Mongols
and Semuren were given certain advantages in the dynasty, and this would last even after the
restoration of the imperial examination in the early 14th century. In general there were very
few North Chinese or Southerners reaching the highest-post in the government compared with
the possibility that Persians did so in the Ilkhanate. Later the Yongle Emperor of the Ming
dynasty also mentioned the discrimination that existed during the Yuan dynasty. In response to
an objection against the use of barbarians in his government, the Yongle Emperor answered: ...
Discrimination was used by the Mongols during the Yuan dynasty, who employed only Mongols
and Tartars and discarded northern and southern Chinese and this was precisely the cause that
brought disaster upon them"'

Question: How did the unequal treatment of Chinese versus Mongols in the Yuan
make the dynasty seem?

Correct Answer: colonial
Model’s Answer: fear of transferring power to the ethnic Chinese under their rule

Our above results may suggest an over-fitting to the data for our model, which means that
we could benefit from additional drop-off and less training epochs. Our answer showed too much
adherence to the wording of the question itself, and also resembled some answers regarding Mongols
from the training set.

Lastly, we found that our model said that certain answerable questions could not be an-
swered, while several questions that could not be answered received answers. While we cannot
pinpoint the exact part of our model that would cause this issue, this could be a result of our start and
end probabilities not reaching a certain threshold in some areas, skewing our model’s predictive
capabilities.

7 Conclusion

We sought to implement a variation of R-Net with code that initially served as a BIDAF model.
In order to shift towards R-Net, we implemented character-level embeddings to build embeddings
which are more resistant to character-level deviations. Furthermore, in the case of out of context
words, character embeddings improve our classifications, and thus preventing cases where word-level
embeddings assign random values and skew the model. We honed in on the implementation character-
level embeddings as a critical feature of our model. We then concatenated our character-level and
word-level embeddings, and then sought out to create a self-matching attention structure similar in
nature to Microsoft’s R-Net paper.

Our results after the implementation of our self-matching attention were less strong than when we
used the BIDAF attention layer, so we know that there was room for improvement for our functionality
there. However, the process of coding this function showed just how powerful variations of additive
attention can be, and if we were to have nailed down the self-matching attention, we could have
seen vastly better results. We can say with confidence that adding character-level embeddings and
lowering batch size could improve upon a BIDAF model, but we did not find that our implementation
of self-attention could beat out the attention layer from the starter code.

We also found that replacing an LSTM cell type with GRU improved performance. Over the course
of the project, we have learned a great deal about how certain training parameters, cell types, and
embedding types can affect training time and improve performance. Additionally, in training a large



data set, we put into action the principles of scaling and performance effects, as discussed by guest
lecturer Jared Kaplan. Furthermore, we were exposed to the critical nature of having access to
increased computing power.

We were proud to have made additions to the starter code such that we could beat the baseline scores,
and feel as if more time could enable us to reach higher heights in question answering. With more
time, we think it would also be interesting to continue analyzing Microsoft’s R-NET model structure
incrementally. By rigorously implementing and testing each step, we could not only gain a deeper
understanding about their motivations behind each modification, but maybe find potential spots or
tweaks that they overlooked.

Unsurprisingly, since we were only able to implement a model that was less intricate than their
R-NET, we weren’t able to achieve the same level of results, but the end goal would be to build on
top of their already completed work to continue improving the evaluation scores.
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