
Building a QA system (Robust QA track)
Stanford CS224N Default Project

Ammaar Adam
Department of Computer Science

Stanford University
ammaar@stanford.edu

Coleman Smith
Department of Computer Science

Stanford University
csmith89@stanford.edu

Takao Yatagai
Department of Computer Science

Stanford University
yatagait@stanford.edu

Abstract

The goal of this project is to investigate the effects that meta-learning has on
improving model accuracy in the context of a question answering system. We’ve
based our work on findings from [1] [2]. The DistilBERT baseline model seems
to not be able to adapt to out-of-domain texts, and we use meta-learning to get
the model to better adapt to new domains. We were able to contribute a codebase
and results that allowed us to test our meta-learning methods using DistilBERT
and two classification head on its ability to adapt to out-of-domain questions. We
were able to see that the meta-learning methods had better generalization errors,
and with more training epochs, shows potential to out-perform the baseline on the
out-of-domain validation sets.

1 Key Information to include

• Mentor: Elaine Yi Ling Sui

• External Collaborators (if you have any): N/A

• Sharing project: No

2 Introduction

The Question Answering (QA) problem in the natural language processing community has gained
much attention in recent years due to how useful an effective QA system would be in our daily lives,
such as for smart assistants and for search engines. One of the difficulties of the QA system is that the
question and answers can span so many different domains, ranging from financial questions to how
to cook. This variability in the domains that the QA system must perform well on makes the problem
quite difficult to tackle. The RobustQA track emulates this challenge by having to perform well
on out-of-domain datasets, given many in-domain samples, and a very small set of out-of-domain
samples.

Data scarcity is a main factor that limits many machine learning approaches, and is especially limiting
in the QA systems. The range of domains that the QA system must perform on is limitless, and we
want to be able to perform well on most domains, even if we have very little data to learn about a new
domain. To tackle this issue of domain changes, we decided to explore meta-learning. Meta-learning
effectively trains the model how to learn, rather than traditional supervised models that trains the
model what to learn. In this project, we explore how we can use the few-shot framework to make our
QA system robust to the out of domain samples.

Stanford CS224N Natural Language Processing with Deep Learning



3 Related Work

We’ve based our work on findings from two different papers. [1] [2], with more specifics on [2] in
the following section.

3.1 MAML

The main meta-learning framework that we based our ideas off of is the Model-Agnostic-Meta-
Learning (MAML) model [2]. The MAML model poses the problem at hand as a few-shot classifi-
cation problem, consisting of a support set and query set for each new distribution of samples. The
first was based on ideas from [2] which we discuss later in our approach section. We base our meta
learning approach on ideas from [2]. The main approach from [2] is represented in Figure 1.

Figure 1: Diagram of the model-agnostic meta-learning algorithm (MAML), which optimizes for a
representation θ that can quickly adapt to new tasks. Taken from [2].

The main idea behind the MAML algorithm is that we are trying to train a model that can quickly
adapt to new tasks, given a small subset of examples from the new task. Training using MAML
mainly consists of two steps: First, we use the support set as examples from the new task, to adapt our
model to this new domain. The adaptation is shown as θi in the diagram. Once our model has adapted
to the new task, we then see how well the adapted model performs on the query set, another set of
samples from the new task. We perform forward propagation on the query set and calculate the loss
we get from the query set on this new task. The key point behind meta-learning is that we aggregate
the losses we get from adapting and evaluating on different domains, and use the aggregated losses
for back-propagation. This allows the model to learn parameters that can effectively learn to perform
well on different domains.

4 Approach

The main challenge that the baseline model posed was that it was able to perform decently well
on the in-domain datasets, but its performance significantly dropped on the out-of-domain datasets.
This signifies that the baseline model is not robust to distribution changes, especially given far fewer
samples of a new domain.

In order to combat the inability for the baseline model to adapt to new domains, we have decided
to investigate framing this problem as a few-shot learning problem. We see that the out-of-domain
training set is much smaller than the training set of the in-domain datasets, and we see that the
inability of the baseline model to learn from this new domain is due to the smaller sample size.
Therefore, we define the few-shot problem as adapting to a new domain in K = 127 shots. As we
have seen from the MAML paper [2], MAML is able to adapt to a variety of different tasks using the
few-shot learning approach.

Given that the nature of the question-answering problem is ultimately a classification problem—
specifically, classifying which index is the start and end index of the answer from the given corpus—

2



we frame the problem as a 127 - shot, 384 - way problem, since the maximum sequence length is 384
tokens long.

The main changes that we implemented to the baseline was adapting our problem to the meta-learning
framework, following the framework described in the above section.

For the backbone of our MAML model, we are still using DistilBERT [3] which is a smaller, distilled
version of the original BERT built on a pre-trained transformer.

In modifying/adapting the baseline to a meta-learning framework, we had to make two main alterations
to the baseline code which we coded ourselves, which were to re-write a few-shot classification
data loader such that it can feed data into our MAML model appropriately, and to implement the
meta-learning framework using the DistilBERT backbone and multiple classification heads. Specifics
about our implementation of these two components can be found below.

4.1 Few-Shot Dataloader

We implemented a new data loader which separated our data into support and query sets, iterable
over the domain. Since we’re doing batch learning, we also randomize the order in which domains
examples are provided with a batch, i.e. in which order the model is trained on the domains, per-batch.
Some design decisions we have made is when training, we split the in-domain train-set into support
and query sets. In validation on in-domain val-set, we use the in-domain train set as the support
set, and the in-domain val-set as the query set. In validating the out-domain val-set, we use the
out-domain train set for the support set, and the out-domain dev/test set for the query set.

Specifically, during training, each batch consists of a batch for each domain in the in-domain datasets.
Then, in each domain batch, there is a support and query set, where the support set size is 127,
and that for the query set a hyper-parameter. Therefore, each batch has shape (3, batch_size +
query_size,max_sequence_length). Note that the order in which we see the domain batches are
randomized in training.

During evaluation, we adapt to the support set we get from the train set of the out-of-domain datasets,
and feed-forward the dev/test samples as the query set to evaluate our model.

4.2 Meta-Learning Question Answering Model

For our meta-learning QA model, we had to implement a meta-learning wrapper around
DistilBertForQuestionAnswer such that we could make incremental learning changes (via
the support set examples), while still being able to reset to the pre-domain-specialized model before
training in the next domain. This introduced a significant amount of complexity relating to PyTorch’s
use of data-graphs for gradient descent, and our need to change weights in the intermediate time-frame
between forward and back propagation.

What made this wrapper particularly complex was that our loss from each domain needed to be
aggregated at the end of the forward step of each batch, before being applied via back-propagation all
at once at the end of each batch of learning. This was specifically to prevent the model from making
incremental changes as domains were encountered, which might have skewed the resulting model.

The algorithm of our model is as follows:

1. Bi ← from dataloader - loads i-th batch
2. Losses← - Initialize loss list (used to aggregate losses over domains) θi - get initial model

parameters
3. for d in num_domains:

(a) Xsd , ysd ← Bi[d][support] - Support set features and labels for domain d
(b) Xqd , yqd ← Bi[d][query] - Query set features and labels for domain d
(c) θ∗d ← inner_update(Xsd , ysd , θi) - Learn the new domain from the support set exam-

ples
(d) Lossd ← θ∗d(Xqd , yqd) - Forward propagate and get loss on query set
(e) Append Lossd to Losses
(f) θi ← θi - Reset support set learning

3



4. Loss← mean(Losses)

5. Back-Propagate aggregated losses to both classifier and DiltilBERT components.

To create our meta-learning wrapper, we took a DistilBertForQuestionAnswer from a pre-
trained model and saved the DistilBertModel contained within as an component of our MAML
model. We then built our own classifier, and had MAML feed DistilBertModel’s results into our
classifier to get our results. We chose this approach firstly because it allowed us to make use of the
already-implemented DistilBertModel, while also allowing us to take a meta-learning approach
via a functionally implemented classification head. The need to learn the support set before query
propagation, before unlearning it and learning the new support set. It also mirrored the implementation
of DistilBertForQuestionAnswering, which is composed of a DistilBertModel and a single
linear layer classifier.

For training this model, we first trained our classifier on the support set to specialize our model for
the new domain before forward propagating the query set through the entire model. By disabling
PyTorch gradients during the support set training, we were able to avoid data-graph errors with the
HuggingFace DistilBertModel implementation, while still making meta-learning updates to the
classifier head of our model. Because the classification head was implemented functionally as well,
we were able to load and reset the model weights as-needed during the intermediate steps of our
forward method.

This all means that our DistilBertModel is not primed to a new domain via the support set, but
our classification head is primed to a new domain via the output of our DistilBertModel on that
domain. Thus, we applied two slightly different forms of training with meta-learning to the two
parts of our model: regular feedforward and backpropagation training on DistilBertModel with
a more generalized loss due to the specialization of the classification head via temporary support
set training and; learning with a meta-learning approach on our classification head, with temporary
and permanent learning on the support and query sets, respectively. Overall, this gave us a novel
approach to applying meta-learning to composite functional and non-functional models.

Furthermore, by separating the classification head from our DistilBertModel, we were able to use
multiple types of classifiers. Specifically, we tested both a linear classifier—as a vanilla comparison
between baseline and our approach with meta-learning—as well as a multi-layer perceptron, hoping
to attain greater accuracy by adding depth to our classifier.

5 Experiments

5.1 Data

We are provided with three in-domain reading comprehension datasets. The three datasets all have
50000 training examples and between 5000-10000 dev examples. We use the training examples from
these three in-domain datasets to train our model with meta-learning, splitting the 50000 examples
into support and query sets. Specifically, during meta-training, we set the support size to be 127, as
this will be the size of the out-of-domain training set when we try to predict on the out-of-domain
validation and dev and test sets. We then use the in-domain dev sets for hyper-parameter tuning.

We are also provided with three small out-of-domain datasets from different domains. These datasets
have 127 training examples, 128 dev examples, and between 400 and 2700 test examples. We use our
127 training examples as a pre-evaluation support set to train our model on the new domain using
meta-learning. This support-trained model is then evaluated on our dev and test sets.

5.2 Evaluation method

Our performance is measured via two metrics: Exact Match (EM) score and F1 score. EM is a binary
measure (i.e. true/false) of whether the system output matches the ground truth answer exactly. F1
is the harmonic mean of precision and recall. Our EM and F1 scores are averaged across the entire
evaluation dataset to get the final reported scores.

4



5.3 Experimental details

There were two main steps in getting our final test scores. The first part was training our model on
the entire in-domain dataset, using meta-learning. Then, having trained on our in-domain dataset,
we evaluate on the dev and test set of the out-domain datasets. In particular, we use the entire train
set of the out-of-domain datasets as the support sets which is used for the model to adapt to the
out-of-domain datasets, then evaluated on the dev/test splits. We use the evaluations of the dev set
of the out-of-domain datasets for hyper-parameter tuning. After performing some grid-search on
hyper-parameters, we were able to get the following hyper-parameters:

1. learning rate: 0.01
2. number of inner updates during training: 10
3. number of inner updates during evaluation: 50

The hyper-parameters that were most influential were the number of inner updates. The number of
inner updates is the number of times we back-propagate the loss we get from the support set when we
are trying to adapt the model to the new domain. If we have too many inner updates, our classifier
would over-fit to the support set, and not perform as well on the query set. However, if we under-fit
the support set, we would not perform well on the query set because our classifier wouldn’t have
learned enough about the new task. An interesting point to note is how the number of inner updates
differs between when we train versus when we evaluate. We reason that during evaluation, since we
must adapt to the totally new out of domain datasets, we need many more updates than we did in
training. In training, we were training our model on the same in-domain query data, so we do not
need too many inner updates because each batch (task) is not so different from one another.

5.4 Results

Method Dev Test
F1 EM F1 EM

In Domain Datasets
Baseline 70.18 54.30 N/A N/A

LinearLearner 65.01 48.07 N/A N/A
MLPLearner 68.57 52.15 N/A N/A

Out of Domain Datasets
Baseline 47.57 31.41 N/A* N/A*

LinearLearner 42.55 24.87 55.063 35.872
MLPLearner 44.77 29.32 58.331 39.358

*We did not evaluate the baseline on the test set as we did not want to use up one of our three
submissions on the baseline.

Our MLP classification head performed better than our linear classification head in both in- and
out-domain settings, likely due to the MLP classifier being able to capture more generality and
complexity than the its linear counterpart.

Sadly, both underperformed compared to the baseline results. However, we believe that this is likely
due to funding and time constraints—with the latter exacerbated by the former—which prevented our
models from reaching their full potential.

6 Analysis

During development and training, we paid close attention to both the in-domain validation scores
and out-of-domain validation scores over the training epochs. One of our major challenges in
implementing these methods was training our model with a few-shot classification data-loader while
still evaluating using the original QADataset given to us in the baseline code. Thus, we used the
baseline results in these metrics as a sanity check in an effort to ensure that all parts of our model
were working.

5



Figure 2: Loss curve for Baseline and Meta-Learning Distilbert Model + MLP

Figure 3: F1 Scores for Meta-Learning Distilbert
Model + LinearLearner

Figure 4: F1 Scores for Meta-Learning Distilbert
Model + MLP

Taking a look at both in-domain and out-of-domain validation F1 scores for the meta-learning
distilBERT model with classification heads (Linear and Multi-Layer Perceptron), we see that for both
models, although the in-domain F1 score did not reach the same level as our provided baseline model,
the trajectory of improvement remained positive. Further, although the loss’ rate of decrease was
slowing, it had clearly not yet reached a steady plateau. We can observe that the training loss for
baseline decreases faster because the model easily overfits the training data, whereas meta-learning
takes longer to reach training convergence, because it learns a more general model, which results in a
higher out-of-domain performance in the same number of epochs. This indicates that we need more
epochs to train our meta-learning methods than our baseline to reach similar levels of training loss.

Additionally, the part that we are most excited about is that our out-of-domain F1 scores are also still
increasing, and the discrepancy between the in and out of domain performance is similar, or less than
that of the baseline model. This indicates that the meta-learning algorithm is able to achieve better
generalization to the out-of-domain datasets. We see that although the F1 scores are increasing over
epochs, the difference does not increase nearly as much, which means that the generalization errors
do not increase with more epochs, especially for the meta-learning models.

We also note that our MLP classifier performed better on both in- and out-domain settings. This is
likely due to the greater depth of the classifier network being used, but shows that there is potential
for improvement upon the current DistilBertForQuestionAnswering via the use of a deeper/more
complex classifier.

Although we see a decreased discrepancy between our in-domain and out-of-domain validation scores
on the meta-learning methods than the baseline, the discrepancy still exists, which still shows the
limitation of meta-learning in reducing generalization errors. We may be able to see a greater decrease
in generalization errors if the problem were slightly different. Specifically, we think that comparing
the baseline and meta-learning methods on datasets consisting of a far greater number of domains,
and with fewer number of samples per domain would show greater generalization improvement from
the meta-learning method. We believe that a meta-learning approach will work well as it has inherent

6



advantages in capturing more general information from training data, is less prone to over-fitting, and
does not suffer from divergence due to evenly spread directionality within the search space between
the model parameters and loss over these many domains.

7 Conclusion

In our investigation, we have shown that a meta-learning approach to the generalized question-answer
task clearly shows potential for improving upon more well-established techniques in the field. As
we see from the three figures of our training loss, in-domain validation scores, and out-domain
validation scores, our model clearly is able to adapt well to the in-domain datasets, without plateauing
on the out-domain validation set scores. This shows that the idea of using the small train-set of
the out-of-domain dataset serves as a good way of adapting to new out-of-domain tasks, and that
meta-learning during training is a viable way for the model to adapt to different domains better. The
main bottleneck of the project has been the compute resources and time. We spent the majority of
the time coding up the very intricate and complex meta-learning algorithms, especially given the
complexity of DistilBERT, and as noted in our analysis, our model may have performed better if given
more time to train. Our main contributions is the adoption of the meta-learning framework for the
robust QA problem. We were able to overcome the large roadblock of implementing meta-learning
that stemmed from the nature of PyTorch/TensorFlow and their use of data-graphs in gradient descent
calculations.

Given our results and the improved generalization of our meta-learning model, we would like to
further investigating attaining higher scores for both in-domain validation scores and for out-domain
validation scores. We could implement deeper networks for our classification head to achieve better
performance on our in-domain datasets. We could then evaluate how much the model overfits to
the in-domain datasets by validating on the out-of-domain datasets, and explore how we can use
techniques such as data augmentations and regularization techinques (such as dropout) in decreasing
the generalization errors such that the out-of-domain validation scores could improve with the
improvement on the in-domain datasets.

Additionally, since we are only testing for 3 out-of-domain datasets, there are not that many new
tasks that the model must adapt to. Some future directions to take this would be to evaluate on a
similar QA task with many more different classifications of domains, with much fewer train samples
per domain. Then, we can compare how the meta-learning framework would compare against the
baseline in this even more challenging problem of adapting to many more tasks with fewer samples.

References
[1] Arzoo Katiyar Kilian Q. Weinberger Tianyi Zhang, Felix Wu and Yoav Artzi. Revisiting few-

sample bert fine-tuning. In The International Conference on Learning Representations (ICLR),
2021.

[2] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In arXiv preprint arXiv:1703.03400, 2017.

[3] Julien Chaumond Victor Sanh, Lysandre Debut and Thomas Wolf. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. In arXiv preprint arXiv:1910.01108, 2019.

7


	Key Information to include
	Introduction
	Related Work
	MAML

	Approach
	Few-Shot Dataloader
	Meta-Learning Question Answering Model

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion

