
Improving BiDAF Heuristically and with
Self-Attention for SQuAD 2.0

Stanford CS224N Default IIDSQuAD Project

Nathaniel Goenawan
Department of Computer Science

Stanford University
nathgoh@stanford.edu

Christopher Wong
Department of Computer Science

Stanford University
cwong7@stanford.edu

Abstract

Our primary goal in this project was to build a QA system that improves upon
a provided baseline’s performance on the SQuAD 2.0 dataset, doing so through
three major approaches. We first explore the performance of the provided baseline
with and without a character-level embedding layer. Secondly, we explore the
performance of the provdided baseline with the character-level embedding layer
as well as an added simple context/type matching heuristic using a binary-like
word-in-question feature (as discussed further later in this work). Thirdly, we add
a self-attention layer on top of the existing BiDAF attention layer combined with
character embeddings, and explore the performance of this model with and without
the aforementioned binary-like word-in-question feature. We find that the model
subsisting of the baseline with character embeddings yielded the best performance
on the test set, yielding an EM score of 59.104 and an F1 score of 62.673.

1 Key Information
• Our TA mentor is Allan Yang Zhou; we have no external collaborators, no external mentors,

and are not sharing this project with any other classes.

2 Introduction

Question answering (QA) is an important end-user task for natural language processing and infor-
mation retrieval; as such, QA is one of the most studied machine comprehension tasks. The main
goal with QA systems is to, given a question and associated context paragraph, correctly answer
a question. QA systems are widely applicable and have many commercial applications, such as in
popular search engines, where their usage is meant to serve as a relief for the otherwise existent need
to read search results to get an answer to a question.

Specifically, this paper focuses on building a QA system for the Stanford Question Answering Dataset
2.0 (SQuAD 2.0) [1]. This dataset is an extension of SQuAD, a structured dataset containing over
100,000 triples consisting of a context paragraph, question, and answer derived from Wikipedia
articles. The extension introduces over 50,000 unanswerable questions written adversarially by
crowdworkers to look similar to answerable ones, with the intension being that to do well on the
extended SQuAD 2.0 dataset, systems must not only answer questions when possible, but also
determine when no answer is supported by the paragraph and abstain from answering. While there
have been many current state-of-the-art models whose performances exceed human performance in
EM and F1 scores, it should be noted that due to the convenience and rigidity of the SQuAD and
SQuAD 2.0 dataset structures, the performance state-of-the-art models exceeding human performance
is not sufficient cause for concluding that the problem of question answering is solved.

This project aims to improve upon a provided, pre-established baseline QA model by incorporating
combinations of character-level embeddings, a binary-like word-in-question feature (such as one

Stanford CS224N Natural Language Processing with Deep Learning



described in [2]), and a self-attention layer (similar to the one described in [3]). We found that
the addition of character-level embeddings slightly improved on the performance of the baseline
at the cost of a minimal increase in training time, while the addition of a self-attention layer to the
existing BiDAF model with character-level embeddings performed marginally worse than the baseline.
Combining character-level embeddings, a self-attention layer, and the binary-like word-in-question
feature led to improved performance on the dev set but worse performance on the test set, likely due
to overfitting.

3 Related Work

Many architectures have been developed in an attempt to provide solutions to the question-answering
problem as posed by the SQuAD datatset. Here, we provide three models that inspired the work in
this paper.

Figure 1: Full BiDAF Model Architecture

In 2016, the Bidirectional Attention Flow (BiDAF) model introduced a significant advancement in
QA model architecture [4]. BiDAF utilized a Long Short-Term Memory Network (LSTM) with a
bi-directional attention flow mechanism (having both context-to-query and query-to-context attention)
to predict the starting and ending indices of the answer in the context paragraph. Our provided
baseline for this project is very similar to the BiDAF model proposed [4], with the exception being
that the provided baseline only contains word embeddings in its embedding layer, while the original
BiDAF model’s embedding layer contained both word and character-level embeddings. Hence, we
also included character-level embeddings in the hopes of improving performance.

In 2017, Weissenborn et. al propose that to make an effective QA system, one key factor is having an
understanding of the question being asked, specifically referring to an awareness of question words
while processing the context of the question [2]. We implemented a binary-like word-in-question
feature as described in the paper with the aim to be able to select answer spans that match the expected
answer type and are close to important question words.

Also in 2017, R-Net built on BiDAF’s architecture by combining BiDAF’s context-to-query attention
layer with a self-matching attention layer [3]. R-Net performed better than BiDAF on the SQuAD 1.1
test dataset, achieving an EM score 2.3 higher than BiDAF’s EM score and an F1 score 2.4 higher
than BiDAF’s F1 score. In this project, we incorporate self-attention into the architecture in the
hopes of obtaining similar performance improvements as seen with R-Net, recognizing that these
performance improvements were on the SQuAD 1.1 test dataset rather than the SQuAD 2.0 dataset.

2



4 Approach

We extend the baseline model with character-level embedding, a context-matching feature as an
additional input feature, and a self-attention layer.

Figure 2: Extended BiDAF model with word-in-question feature and self-attention.

4.1 Baseline

Our baseline is the provided baseline model for the IIDSQuAD challenge by the CS224N staff, which
is based on the Bi-Directional Attention Flow (BiDAF) model; the only difference is that we have
included a character-level embedding layer [4]. More information about the provided baseline model
can be found in the project handout.

4.2 Character-Level Embedding

The character-level embedding layer will map each word to a high-dimensional vector space. Let
{w1, w2, · · · , wk} ∈ N and {c1, c2, · · · , ck} ∈ N for input word indices and character indices, respec-
tively. In the baseline model, an embedding lookup is produced by converting word indices into word
embeddings for both the context paragraph {c1, c2, · · · , cN} ∈ RD and query {q1, q2, · · · , qN} ∈ RD.
To apply the character-level embedding, we apply it to context paragraph and query. First, we perform
the embedding lookup for the character indices to character embeddings. Then, a dropout is applied
to the embeddings before passing the outputs through a 2D convolutional layer to finally obtained
our learned embeddings. A 2D CNN layer was used as opposed to a 1D CNN layer because prior to
applying the CNN layer, the output size of the character-level embeddings is 4D. Finally, the output of
the CNN are max-pooled over the entire width before concatenating them onto the word embeddings.

4.3 Context-Matching Feature

The context-matching feature is a heuristic that aims to be able to select answer spans that match the
expected answer type and are close to important question words. To accomplish this heuristic, we
implemented a binary-like word-in-question (wiqb) feature. This feature is computed for each context
word xj and explained as the following: j for tokens that are part of the question and otherwise 0.
More formally,

wiqb = I(∃i : xi = qi) (1)

3



where I denotes the indicator function.

We then get the embeddings for the wiqb feature which is then concatenated onto the word embeddings
as shown in Figure 2.

Informally, by providing this context-matching feature, we hope to provide our model with some
"context clues" from the context paragraph that can be helpful in answering the question.

4.4 Self-Attention

For our self-attention layer, we implemented a multi-headed attention layer as described in Vaswani
et al. [5]. Similar to the paper, we also employed 8 parallel attention layers or heads with each head
using scaled dot-product attention. The self-attention layer is included after the BiDAF attention
layer as shown in Figure 2.

5 Experiments

5.1 Data

Figure 3: Example of (question, context, answer) triple from SQuAD

We will be using a portion of the SQuAD 2.0 dataset [1]. The dataset is split into train, dev, and
test sets. The train set contains 129,941 examples, all taken from the SQuAD 2.0 dataset. The dev
set contains 6078 examples (roughly half of the official dev set, randomly selected). Finally, the
test set contains 5915 examples, which come from the remaining dev set and are supplemented by
hand-labeled examples. Preprocessing is provided by the starter code, first processing the train set
and obtaining word and character vocabularies. With the obtained word and character vocabularies,
we processed the dev and test sets to obtain the context and question features.

In addition, from the CS224N staff, we are also provided with pre-trained GloVe word embeddings
and pre-trained character-level embedddings.

5.2 Evaluation method

We will be using the official SQuAD evaluation metrics: Exact Match (EM) and F1 score metrics.
EM is a strict binary metric that measures the percentage of predictions that match any one of the
ground truth answers exactly. F1 score is a measure of a model’s accuracy on a dataset, the harmonic
mean of precision and recall.

5.3 Experimental details

We trained three different models: (1) baseline + character-level embeddings, baseline + character-
level embeddings + wiqb, and (3) baseline + character-level embeddings + wiqb + self-attention. All
models were trained over 30 epochs, a learning rate of 0.5, a drop probability of 0.2, an exponential
decaying rate of 0.999, and a hidden size of 100. Though, it should be noted that while all models
were trained over 30 epochs, we noted that past roughly 20-22 epochs, the model would begin to
over-fit on the training data as indicated by the increase in the dev negative log-likelihood (NLL) as
can be seen in Figure 4.

4



: Baseline : Baseline + Char Embeddings
: Char Embeddings + wiqb : Self-Attention + Char Embeddings + wiqb

: Self-Attention + Char Embeddings

Figure 4: Plots captured from Tensorboard of various quantitative metrics over 30 epochs.

Model Dev EM Dev F1 Test EM Test F1 Total Train Time
Baseline 58.175 61.440 - - 3 hr 9 min

Baseline + Char Embeds 59.452 63.076 59.104 62.673 4 hr 4 min
Char Embeds + wiqb 63.519 66.926 56.585 59.464 10 hr 18 min

Self-Att + Char Embeds 58.14 61.37 - - 8 hr 47 min
Self-Att + Char Embeds + wiqb 62.275 65.772 54.269 56.846 8 hr 48 min

Table 1: Model results on dev set and test set along with total train time over 30 epochs.

5.4 Results

Our results were rather underwhelming with none of our proposed models outperforming the baseline
+ character-level embedding model in the test set. The model with character-level embeddings and
wiqb showed promised in the dev set, showing a substantial 6.8% and 6.1% increase in F1 and EM
scores respectively over the baseline + character-level embedding model. However, this unfortunately
didn’t translate to the test set as shown in Table 1. These observations also extend to the model with
the self-attention layer as well which performed better than baseline + character-level embeddings on
the dev set but not the test set.

6 Analysis

6.1 SQuAD 2.0 By Question Type

The SQuAD 2.0 dataset can be broken down by question type. Specifically, SQuAD 2.0 questions
will have certain question words that we broke down to as such: ’what’, ’who’, ’when’, ’where’,
’why’, ’which’, and ’how’. Any question word types that didn’t fit the aforementioned categories
were categorized as ’other’.

5



As shown in Figure 5, we can see that the SQuAD 2.0 dev set is heavily skewed, with the majority of
questions having the question word ’what’.

Figure 5: Distribution of Questions in Dev Set by Question Type

6.1.1 EM By Question Type

We were curious to see how the models performed on individually on each question type that we
categorized the SQuAD 2.0 dataset into. We can see in Figure 6, that the char embeddings + wiqb +
self-attention model performed surprisingly well on ’why’ and ’other’ question types, while other
models struggled on those two question types to various degrees. Though, these improvements could
be attributed to the lack of data for the ’why’ and ’other’ question types as we see in Figure 5 which
results in high variance and possibly misleading estimation of the model’s performance. Overall,
with the expection of the char embeddings + self-attention model, it was noted the other models all
performed on par or better than the baseline model’s performance.

6.2 SQuAD 1.1 vs SQuAD 2.0

The main difference between SQuAD 1.1 and SQuAD 2.0 is that SQuAD 2.0 has the addition of over
50,000 adversarial unanswerable questions. As such, we were curious to see how our trained models
would perform on the SQuAD 1.1 dev set, which only contains answerable questions, as opposed to
the SQuAD 2.0 dev set, which contains a mix of answerable and unanswerable questions.

Model SQuAD 2.0 EM SQuAD 1.1 EM
Baseline 58.18 68.12

Baseline + Char Embeds 59.45 69.59
Char Embeds + wiqb 63.52 66.89

Self-Att + Char Embeds 58.14 69.14
Self-Att + Char Embeds + wiqb 62.28 66.01

Table 2: Models’ EM results on SQuAD 1.1 vs SQuAD 2.0

We can see from Table 2 that, as expected, without the unanswerable questions, all models performed
significantly better on the SQuAD 1.1 dev set. However, despite the char embedding + wiqb model
and self-attention + char embedding + wiqb model being the two top performers on the SQuAD 2.0
dev set, they were the worst performers on the SQuAD 1.1 dev set, even more so than the baseline
model. This indicates that the performance gains on unanswerable questions are very likely attributed
to the additional model features, mainly wiqb. However, the improvements over other models come
at the expense of answerable question performance.

6



Figure 6: EM Breakdown by Question Type and Model

7 Conclusion

In conclusion, we found that the addition of character-level embeddings slightly improved on the
performance of the baseline at the cost of a minimal increase in training time. On the other hand,
adding a self-attention layer to the existing BiDAF model with character-level embeddings resulted
in minimally worse performance than baseline. This could be because our implementation of self-
attention isn’t suited for a QA system. Combining character-level embeddings, a self-attention
layer, and the binary-like word-in-question feature led to improved performance on the dev set but
worse performance on the test set, likely due to overfitting. Overall, when evaluating all our models
holistically, we see that our baseline with char-embeddings performs the best with minimal increase
in training time and posting the best test set performance. However, we would like to acknowledge
that our word-in-question feature has some potential, having posted a substantially better performance
than baseline on the dev set.

In the future, we could do fine-tuning on our parameters rather than using the provided parameters
across all the models. Having more specifically tuned parameters for each model could lead to
improved results. In addition, we could also focus on implementing additional input features like a
weighted word-in-question feature [2] or do ensemble training to improve performance by combining
predictions from different models together.

References
[1] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable

questions for SQuAD. In Association for Computational Linguistics (ACL), 2018.

[2] Dirk Weissenborn, Georg Wiese, and Laura Seiffe. Fastqa: A simple and efficient neural
architecture for question answering. CoRR, abs/1703.04816, 2017.

[3] Natural Language Computing Group. R-net: Machine reading comprehension with self-matching
networks. May 2017.

[4] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional
attention flow for machine comprehension, 2018.

7



[5] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.

8


	Key Information
	Introduction
	Related Work
	Approach
	Baseline
	Character-Level Embedding
	Context-Matching Feature
	Self-Attention

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	SQuAD 2.0 By Question Type
	EM By Question Type

	SQuAD 1.1 vs SQuAD 2.0

	Conclusion

