
Improved QANet on SQuAD 2.0
Stanford CS224N Default Project

Nicole Lee & Matthew Reed
Department of Computer Science

Stanford University
nicole01@stanford.edu & mattreed@stanford.edu

Abstract

The task of question answering is trivial for humans, but it has long been a known
problem to solve for NLP models. Neural networks like Bidirectional Attention
Flow for Machine Comprehension (BiDAF) and Bidirectional Encoder Represen-
tations from Transformers (BERT) have been dominating the leaderboard when
tested on the Stanford Question Answering Dataset (SQuAD) 2.0, differentiated
from SQuAD 1.0 due to a larger corpus of unanswerable questions. We invalidated
our initial hypothesis that an extended BiDAF model with a Transformer encoder
would improve upon baseline BiDAF results. However, we propose that with
certain alterations, QANet can perform better than the baseline BiDAF model
when evaluated on SQuAD 2.0. Through many iterations and experiments, we find
that an improved QANet with data augmentation and learned positional encodings
outperforms the BiDAF baseline.

1 Key Information to include
• Mentor: Grace Lam
• External Collaborators (if you have any): N/A
• Sharing project: N/A

2 Introduction

Question answering has been a problem that many NLP models have tried to solve in the past years.
Models are given a question and corresponding paragraph as input, then expected to extract the
correct span (ie. segment of text) from the passage that answers the question.

Initially, this question answering task was solved for niche categories like Major League Baseball
through BASEBALL and geological analysis of rocks returned by the Apollo moon missions through
LUNAR. These models used similar architecture to that of ELIZA and performed extremely well in
their particular domains. Later, models like LSTM, BiDAF, and QANet emerged to perform well on
a more broad SQuAD 1.0 dataset [1]. Soon, the BERT model outperformed both LSTM and BiDAF.
With the introduction of more unanswerable questions within the new SQuAD 2.0 dataset, these
models began to show worsened performance.

While some models have been tested on the SQuAD 2.0 dataset, the performance of QANet has not
yet been thoroughly researched. We propose that the introduction of the QANet model will improve
performance for the SQuAD 2.0 dataset. Specifically, we implemented a QANet model from scratch
and introduced additional data augmentation and learned positional encodings.

3 Related Work

The baseline implementation is a provided Bidirectional Attention Flow network [2]. This hierarchical
multi-stage architecture models the representations of given context paragraphs at different levels

Stanford CS224N Natural Language Processing with Deep Learning



of granularity. The most significant part of the BiDAF model is its bidirectional attention flow that
allows for query-aware context representation. Specifically, its attention layer is computed at every
time step and flows to the following model layer, reducing information loss originally caused by
summarization. BiDAF also simplifies the attention layer by using a memory-less mechanism that
does not directly depend on the attention from the previous time step.

Our base QANet architecture is mainly adopted from the question answering task implementation of
Yu et al. [3] Without the use of recurrent networks, QANet is faster than the sequential framework
of RNNs. In fact, Yu shows that the QANet model is 3x-13x faster in training and 4x-9x faster in
inference while still maintaining equal accuracy scores compared to recurrent models.

4 Approach

Originally, we hypothesized that using a Transformer architecture within the BiDAF model would
improve performance. We specifically replaced the encoder layer with a Transformer instead of
LSTM and introduced character-level embeddings. Because character-level embeddings better handle
out-of-vocabulary words and can condition on the internal structure of words, we hypothesized that
this would improve the model. However, our results showed that this did not improve upon the
baseline scores.

We then pivoted to a different approach: implementing a QANet model from scratch. The QANet
model has yet to be thoroughly trained and tested on SQuAD 2.0, so we adopted the approach of Yu
et al. [3] as outlined in Figure 1.

Figure 1. QANet model architecture [3]

QANet is composed in a similar fashion to other existing models. It has five main components: an
embedding layer, an embedding encoder layer, a context-query attention layer, a model encoder layer,
and an output layer. However, instead of utilizing RNNs within the embedding and modeling encoder
layers, we use convolutional and self-attention mechanisms. This combination greatly increases the
speed of experimentation.

One of our main alterations to the default QANet model is the introduction of data augmentation
and learned positional encodings. Data augmentation in the form of "word-dropout" can help with
generalization [4] while learned parameters for positional encodings can allow the model to learn
better.

2



5 Experiments

5.1 Data

We are using the Stanford Question Answering Dataset (SQuAD), specifically SQuAD 2.0 which
unlike SQuAD 1.0, has a large corpus of unanswerable questions [1]. SQuAD 2.0 contains more than
100,000 questions for machine comprehension. A group of crowdworkers generated questions on a
set of Wikipedia articles in which the answer to a given question is a span (ie. segment of text) from
the corresponding passage.

Using this data, we send our model a question and corresponding paragraph of text as input. The goal
is for the model to output a prediction for the span of the passage that correctly answers the given
question.

5.2 Evaluation method

Given a question, the task is for the model to correctly predict the span of text from the corresponding
passage that answers the question. We evaluate the accuracy of the model’s predictions using three
different scores: F1, EM, and NLL. The F1 score measures the harmonic mean of precision and
recall while the EM metric is a binary evaluation and NLL communicates the magnitude of incorrect
predictions. The combination of all three of these metrics is necessary in evaluating the model’s
performance. Specifically, the F1 score is much less harsh in its punishment for answer variations as
compared to the need for precision in EM computations.

5.3 Experimental details and analysis

Early on in our experimental process, we hypothesized that replacing the bidirectional LSTM with a
Transformer encoder and introducing character-level embeddings would improve upon the baseline
scores. After spending many hours implementing this new structure, running 3 separate experiments
that failed to outperform the baseline, and attending office hours, we found that this was not the best
approach. Figure 2 below visualizes the worsening performance of each iteration, none of which
outperformed the baseline.

Figure 2. First experiment phase of BiDAF model using a Transformer encoder

After analyzing these results, we pivoted to implementing QANet from scratch instead. We mainly
referenced the works of Yu et al. [3] and created a QANet model by altering the original BiDAF
embedding, embedding encoder, context-query attention, model encoder, and output layers. The
main difference between the implementation of the QANet and BiDAF models is the structure of
their respective encoding mechanisms. BiDAF utilizes RNNs within the embedding encoding and
modeling layers while QANet is focuses on convolution and self-attention layers in the encoder block.
QANet also uses character-level embeddings, which the original baseline BiDAF model does not
have. Our first approach to implementing QANet is visualized in Figure 3 below.

3



Figure 3. First phase of experiments for implementing QANet

Unfortunately, our two experiments (4 and 5) within this iteration both performed much worse
than the baseline with little to no improvement from the original starting point. Because these
implementations were not making improvements and to conserve Azure credits, we decided to halt
both of these experiments.

We hypothesize that the poor performance was due to the sheer size of our model. The 3 encoder
blocks each contained 3 layers and the embedding encoder layer had 5 layers. We had also not yet
implemented a linear projection layer to follow the embedding and BiDAF attention layers. Because
of this, we were not projecting the embeddings to the hidden size, causing the size to exponentially
increase. By the time we concatenated the two encoders, the embeddings had grown to 16x the
hidden size. Another note is that we were forced to reduce the batch size from 64 to 32 due to a
combination of exponentially large embeddings, a consequently substantial amount of parameters,
and the limited CUDA storage available. This decrease in batch size introduced noise and could have
further worsened performance.

When neural networks are too large and have too many parameters, possible solutions include
stopping training early, regularization, or simplifying the model. We found that halting training early
did not improve the performance, so we decided to simplify the model by decreasing the hidden size
to 128 and consequently avoiding overfitting. We also implemented a linear projection layer to avoid
creating exponentially large embeddings and number of parameters. The graphs below in Figure 4
represent this iteration’s results.

Figure 4. Second phase of experiments for implementing QANet with simplification

After implementing these new features, however, we observed the upward projection of the model’s
loss halfway through the 30 epochs as shown in Figure 3. Our model overfit to the training data,
resulting in overly sensitive adaptations to the dev set and worsening performance around epoch 15.
To attempt fixing this overfitting problem, we further decreased the hidden size to 100 and changed
the learning rate from 0.5 to 0.75. While this iteration performed better than the last, it still failed to
outperform the baseline results (Figure 5).

4



Figure 5. Third phase of experiments for implementing
QANet with altered learning rates and hidden sizes

For our next experiment, we decided to use a convolution layer as our projection layer instead of
a linear layer. We were skeptical of this change improving the model, as language depends on
long-term dependencies rather than short-term dependencies and convolution focuses on the latter.
Our hypothesis that convolution would not improve the model was correct and the results are as
follows in Figure 6.

Figure 6. Fourth phase of experiments for implementing QANet with convolution

From the training loss data, we found that our model does not seem to be as generalizable. Thus, we
discarded the convolution projection layer and decided to use data augmentation for the question
query instead. We specifically used a dropout probability of 0.1 for each word in the question query,
excluding the <START> token. Li et al. explains that the concept of "word-dropout" can improve
generalization by reducing the information in sentences through "_" placeholders for random words
[4].

Figure 6. Fifth phase of experiments for implementing QANet with data augmentation

In our next iteration, we kept the same data augmentation implementation but also added learnable
positional encodings to the encoding layer. The original architecture encoded positions into hidden
layers using a sinusoidal lookup table, but we hypothesized that learnable parameters would help the
model learn positional encodings better. One advantage is the flexibility to deal with non-sequential
insertions into the data that fixed positional encodings would not handle well.

5



Figure 7. Final phase of experiments for implementing QANet
with data augmentation and learnable positional encodings

For the dev set, our implementation beat the baseline with scores of F1: 62.690, EM: 59.120, and
NLL: 2.993. More dev set results are shown in Figure 7.

All of the mentioned experiments completed in approximately 5 hours, with about 10 minutes
dedicated to each epoch. These experiments were also all run on Azure NC6s v3 virtual machine
with evaluation performed every 20,000 iterations. The learning rate for each experiment ranged
from 0.5 to 0.75, and the last experiment with our best results used a learning rate of 0.75.

5.4 Results

The below table quantifies the dev set results from our original introduction of transformer architecture
and our later QANet implementation. We found that our improved QANet implementation with data
augmentation and learned positional encodings produced the best scores, outperforming the baseline
BiDAF model. Our QAnet implementation with only data augmentation, however, outputted the
lowest NLL loss.

Phase Experiment F1 Score EM Score NLL
Baseline 62.027 58.763 2.837

Transformer Experiment 1 60.960 57.920 2.822
Experiment 2 59.856 56.646 2.884
Experiment 3 60.090 57.120 2.867

QANet Experiment 4 52.190 52.190 3.760
Experiment 5 53.110 52.190 3.639
Experiment 6 59.960 56.610 3.083
Experiment 7 61.200 57.860 2.851
Experiment 8 61.869 58.478 2.786
Experiment 9 62.695 59.116 2.993

Figure 7. Experimental dev set results

In terms of the test leaderboard (non-PCE), our highest scores are as follows: F1: 57.819, EM:
61.465.

These results validate our hypothesis that the QANet architecture outperforms the BiDAF model on
SQuAD 2.0. However, we had expected our implementation of QANet with only data augmentation
(Experiment 8) to also produce better results than the baseline. With the new introduction of data
augmentation, this model produced worse F1 and EM scores, but a lower NLL loss. We suspect that
our low scores may be due to the structure of the loss function that does not optimize for F1 and EM
scores.

6 Analysis

Note that most of our analysis is in Section 5.3, as we investigated different methods to improve the
model during each experimental iteration. Nonetheless, we performed data analysis on our model’s
performance for the dev set below in Figure 8. We evaluated the prediction as correct if the general
segment encompassed the same idea as the actual answer (ie. "money from foreign Islamist banking
systems" matches "with money from foreign Islamist banking systems). We recorded the accuracy

6



percentages of 100 dev set examples available on Tensorboard. We expected that the model would
exhibit worse performance on "why" questions, as these tend to require more logical reasoning that
is difficult for models to learn. Beware that Figure 8 is slightly misleading, however, because there
was only one "why" example in the dataset (n = 1). Excluding "why" questions, we found that our
model performs the best on "when" questions (n = 13). We hypothesize that this is due to the explicit
trivial nature of "when" questions that most likely have a calendar date, month, or year as the answer.
There were also very few "how" (n = 11) and "where" (n = 4) examples as well. "What" questions
(n = 54) did not produce high accuracy either, and we believe that this can be attributed to the broad
set of possible answer categories for this type of question.

Who What When Where Why How Which

Figure 8. Accuracy percentages for different types of questions on dev set

We also observed that questions that do not start with either "what," "when," "who," "why," or
"how" are less likely to be predicted correctly by our model. We suspect that this is because our
model is unable to generalize the question without having the specific target as the query’s first word.
Examples of incorrect predictions are shown below in Figure 9.

Question: Orientalism refers to how the South developed a what of the North?
• Answer: N/A, Prediction: imaginative geography

Question: The Presiding Officer tries the achieve a balance between similar viewpoints and
whom?

• Answer: N/A, Prediction: political parties

Question: The time required to output an answer on a deterministic Turing machine is
expressed as what?

• Answer: state transitions, Prediction: "yes" or "no")

Figure 9. Incorrect question predictions of QANet implementation for indirect queries

Though our reported QANet dev set results for Experiment 8 did not beat the baseline BiDAF scores,
we believe that our model with data augmentation can still perform better in terms of negative log
likelihood. The training loss proved to be lower than that of the baseline, but we were unable to
evaluate this metric in the test leaderboard. Further examining the NLL loss can give us more
perspective on the performance of our model, rather than only comparing F1 and EM scores.

7 Conclusion

For this project, we evaluated many different model implementations on SQuAD 2.0 in pursuit of
improving the default BiDAF baseline F1 and EM scores.

7



Our initial hypothesis that an extended BiDAF model with a Transformer encoder would improve
upon the baseline BiDAF scores. Though this was invalidated, we believe that this was an interesting
finding to note.

We pivoted to implementing a QANet model with built-in character-level embeddings and learned
that a simple QANet architecture is not enough to outperform the original BiDAF model. Our main
findings were that a QANet implementation with additional data augmentation and learned positional
encodings produces better F1 and EM scores when compared with the BiDAF baseline.

Our QANet implementation with data augmentation produced the lowest NLL loss and we believe
that with more time, it would have been possible for this model to also outperform the baseline.
Further examining the loss function and potentially making changes could better approximate the F1
and EM metrics.

With our limited time and pivot from transformers to QANet models halfway through the process, we
were unable to test whether the Transformer-XL architecture could improve the QANet model for
SQuAD 2.0. However, we believe that this would have further improved our model and maintained
higher scores than the baseline due to its recurrence and attention mechanism that better handles
long-term dependencies. More research in the space of QANet model implementation for SQuAD
2.0 is encouraged.

References
[1] Pranav Rajpurkar et al. Squad: 100,000+ questions for machine comprehension of text. In

Stanford University, 2016.

[2] Minjoon Seo et al. Bi-directional attention flow for machine comprehension. In University of
Washington, Allen Institute for Artificial Intelligence, 2018.

[3] Adams Wei Yu et al. Qanet: Combining local convolution with global self-attention for reading
comprehension. In Carnegie Mellon University, Google Brain, 2018.

[4] Bohan Li et al. Data augmentation approaches in natural language processing. In Harbin Institute
of Technology, Harbin, China, 2021.

8


	Key Information to include
	Introduction
	Related Work
	Approach
	Experiments
	Data
	Evaluation method
	Experimental details and analysis
	Results

	Analysis
	Conclusion

