
Self-Attention QA System
Stanford CS224N Default Project

Track: Squad

Aryan Chaudhary and Kevin Yang
Department of Computer Science

Stanford University
achaud@stanford.edu, kevvyang@stanford.edu

Abstract

In this project, we built a neural network model that can answer questions for the
Stanford Question Anwering Dataset (SQuAD) 2.0. We based our model off the
2017 R-NET implementation by incorporating the self-attentive features, including
the gated attention based recurrent network. From the baseline BiDAF model, we
included two key changes: character embeddings and R-NET self-attention. We
expected these two changes to display improvements from the baseline (EM =
52.19, F1 = 55.69), and after including character embeddings, we saw a slight
increase to EM = 54.51, F1 = 57.92. Our scores further improved after adding
self-attention to EM = 56.15, F1 = 59.96.

1 Key Information to include
• Mentor: Lucia Zheng
• External Collaborators: None
• Sharing project: No

2 Introduction

Asking questions has always been an integral part of human behavior: we are a curious species
that yearns to explore the intricate mysteries that the universe holds. Without this innate desire
to seek out the unknown, humanity would never have progressed beyond the primary stages
of civilization. Question-answering is a key component of our lifestyles that drives every
interaction, which is why it is such an interesting topic to delve into. Now, with the power of
artificial intelligence and natural language processing, we can imbue machines with the power
to answer questions for us. This final project captures the spirit of inquisitiveness that is embed-
ded in every living person’s soul by allowing us to create a tool that finds answers despite all obstacles.

The goal of this project is to give a model the ability to pick out the important pieces of a passage
and return the correct answer given a question. Obviously, there is a plethora of work in this area,
even if we limit the scope to just the world-renowned SQuAD dataset. As students, we cannot hope
to compete with the work of distinguished researchers who have dedicated their lives to natural
language processing, but we can aspire to implement their ideas and possibly find methods to
improve their baselines.

While it may be difficult to create such a model from scratch, we thankfully have a lot of resources to
work with because so many people have taken part in this process already. Especially with the default
project baseline, we are given a headstart into this realm of end-to-end neural network modeling. To

Stanford CS224N Natural Language Processing with Deep Learning



test our model, we used the provided SQuAD 2.0 dataset. This is the official dataset of SQuAD 2.0
and is the dataset used for all the default projects. Within the dataset, there are three sets: train, dev
and test. The training dataset has 129,941 examples, the dev set is randomly selected and has 6078
examples and lastly the test set has 5915 examples.

3 Related Work

Our model is based off an existing model called R-NET, an end-to-end neural networks model for
question answering given a context and a question. This implementation uses a gated attention-based
recurrent network to determine the importance of information in a given passage regarding the
question asked. Next, it uses self-attention to match the passage against itself, which is the piece that
we chose to focus on and incorporate in our own model.

This model was tested on the SQuAD dataset and achieved the best results amongst all published
results for it. In terms of specific metrics, R-NET achieved a high of 71.3 EM and 79.7 F1 for the dev
set and 72.3 EM and 80.7 F1 for the test set. This appears to be the one of the best self-matching
networks currently available so we want to try and build or model using it as a template.

There are also existing question answering models that we can use as baselines to measure our
progress. The starter code for the default project implemented BiDAF (Bi-directional Attention Flow)
to serve as a baseline for our improvements. The BiDAF implementation that we have averages
around 52 EM and 55 F1, which indicates that it is slightly better than blindly guessing at the answer
or only returning N/A.

4 Approach

4.1 Overview of Approach

Our ultimate goal was to incorporate both self-attention as well as character embeddings in order to
improve the results from the baseline code.

We first approached character embeddings. The starter code had word level embeddings al-
ready implemented, and it wasn’t too difficult to extrapolate from that implementation a rough picture
of what character-level embeddings was going to look like. The implementation step was a little
harder, as matching sizes and understanding pytorch functionalities such as max-pooling proved to
be difficult at times.

In the end, we had a fully functioning character and word level embedding neural net, an
improvement from the baseline, and our results of F1 and EM showed it.

To approach R-NET’s self attention, we started by first extensively studying the R-NET
self-attention equations, shown here:

2



After getting a firm grasp of each and every variable, we used the initial BiDAF Attention layer as
our starter code and made changes until it achieved the same effect that R-NET’s self attention did.

4.2 Character Embeddings

When implementing character embeddings, we started by understanding how word embeddings
worked. The initial embeddings within our baseline model only took in x, the word vectors. The
word vectors are then ran through a pretrained word_embeddings layer before applying a dropout
layer, projecting onto a linearity function, and then running it through a highway encoder.

We knew there were going to be many similarities between the code of character embed-
dings and word embeddings, so we duplicated the code within embeddings and started there. Since
the x input was the word vectors, and we can’t use word vectors for the character embeddings,
we needed to input character vectors as well, noted as y. Similarly, we also needed to include
char_embeded, which thankfully is also a pretrained layer. However, the most difficult part is still up
ahead.

The most difficult hurdle in character embeddings is that we need to implement character
embeddings to have the same output size as word embeddings. This is because our forward layer can
only include a singular tensor, so we must return a concatenation of both tensors together, meaning
that they must have the same dimensions. Throughout this process, we got really familiar with
torch.permute, as we had to permute the dimensions of char_emb a few times to match the final
output dimensions.

Slightly different than word embeddings is the fact that in character embeddings, we must
run it through a convolution layer and maxpool layer. Convolution was pretty spelled out for
us, however maxpool had multiple possible implementations. The implemention we ended of
choosing was using torch.amax. Torch.amax takes in an input tensor, and the dimension you
want to find the max on. The reason why we choose amax instead of max is because max returns
a list instead of a tensor when specifying a dimension. Amax however doesn’t and still returns a tensor.

After running character embeddings through an amax, all we had to do was re permute the
dimensions and then run it through a highway. Now within embeddings, we have two tensors of the
same size, one for the character embeddings and oen for our word embeddings. Since they’re the
same size, we just need to concatenate the two, and return.

4.3 R-NET Self-Attention

After implementing character embeddings, we decided to take it to the next level by imple-
menting R-NET self attention. Before we implement this step, however, we had to use a gated
attention-based recurrent network to identify the important parts of a passage given a question
that needs answering. This generates the ’v’ value that we feed into our self attention layer
which contains the sentence-pair representations. The full implementation of this layer is
described in the R-NET documentation, but it is fundamentally very similar to the self-attention layer,
only it uses a gate to focus on the relationship between the question and current word from the context.

Evidently, this process is nearly identical to the R-NET self-attention equations except there is an

3



additional weight matrix in the tanh function to account for the context representations. Here, the uP
t

and uQ
t matrices are context and question representations, respectively, that are used to generate the

vPt self matching context representations.

Our self-attentive model is implemented using additive attention as described in lecture. The benefits
of this approach are that it increases speed and computational simplicity while also increasing the
model’s accuracy. To go through the step by step of self-attention, we can reference the image of
self-attention as well as the image of the gated attention based recurrent network.

In the first step, we are finding the similarity between two vectors and then multiplying it
by a linearity, vT . Our context representations vPt incorporate matching knowledge that was given by
the context/question encodings. This first part was fairly straightforward as all we needed was three
linearity layers, vT , WP

u , and WQ
u . We then just find the sum of the two vectors, put it through a

non-linearity function torch.tanh, and the multiply that by vT . Te next part is obtaining ati, which is
just the softmax of the similarity between two matrices, which is just simply putting it through a
softmax function.

5 Experiments

5.1 Data

This is the official dataset of SQuAD 2.0 and is the dataset used for all the default projects.
Within the dataset, there are three sets: train, dev and test. The training dataset has 129,941 exam-
ples, the dev set is randomly selected and has 6078 examples and lastly the test set has 5915 examples.

There are two types of questions: answerable and unanswerable. Around half the total questions
are those labeled unanswerable. The dataset contains tuples of (context, question, answers). In the
case where there is no answer i.e. unanswerable question, the answer is empty. One restriction on
the answer is that it’s a subset of text from the context, meaning our task at hand is pretty much
"highlighting" the right text from our dataset. Essentially, we are inputting (context, question, answer)
tuples and expecting answers as output from the model.

5.2 Evaluation method

To evaluate performance, we had two metrics: EM metric, and the F1 metric.

The EM metric is a binary metric that measures if you got the right answer or not. This is a strict
metric that doesn’t even count synonmous answers as correct.

F1 is the harmonic mean of precision and recall. The precision is what percentage of the given answer
is in the actual answer, and recall is what percent of the actual answer is in the given answer.

Finally, the mean of these two numbers is taken: we average both scores across the entire dataset to
get the reported scores.

5.3 Experimental details

We first ran our code with the initial BiDAF model and classifier as provided in the starter code, then
ran it again with additional character-level embeddings. We optimized the model using AdaDelta,
setting the learning rate to 0.1, and epsilon to 1e-6. Following the R-NET implementation, our
dropout layer has a dropout rate of 0.2, and our hidden vector length is 75 for all purposes (attention,
linear layers, etc.).

We then experimented with some different learning rates to see if model performance would improve.
We tried out a learning rate of 0.5 and 1 as well, but found that these were relatively ineffective
compared to our lower initial learning rate. This was an interesting difference from the R-NET

4



model, which proposed a learning rate of 1 and performed exceptionally well.

5.4 Results

Character Embedding + BiDAF Model graphs

Self-Attention + Character Embedding + BiDAF Model Graphs

We are on the PCE leaderboard. Our final F1 and EM scores were 56.15 and 59.96. This
is a nice improvement from the baseline we got of 52.19 and 55.69.

We expected a little better than 56.15 and 59.96. Within R-NET, a huge portion of the implementation
they had was their self-attention neural network, which we followed pretty closely and should have
an exact implementation. With that being said, they achieved way higher scores of 72.3 and 80.6, so
we were expecting at least to break 60s in EM and even break 63s in F1.

The reason this may be is because we never incorporated any sorts of self-matching or question-
answer matching which was incorporated within R-NET. They also most likely had more resources
than us as well resulting in better pretrained data.

5



6 Analysis

In order to learn more about when our model succeeds and fails, we can analyze the discrepancy
between correct and incorrect outputs from the model. Observe the following two correct answers
that the model gave:

Here, we can see that when the question explicitly starts with a question word, the model is able to
pull the correct answer out of the context. Through all the training samples, this phenomena was
generalized to all question words like Who?, What?, When?, Where?, Why?, and How?, although
each had relatively unique levels of accuracy. This indicates that the model learned how to correctly
return a name, location, or a time period depending on the question word it was given. Sometimes,
we would observe that the wrong name or time period would be returned, but these occurrences were
few and far between.

Now, take notice of the next two incorrect outputs from the model:

It is clear to see that the model was a bit confused by the wording of the question even though the
fundamental question words are still present. We believe this to be the result of complex wording:
since there is a phrase coming before the actual question itself, the model is less sure about which
parts of the question to pay more attention too and therefore what the actual question it needs to
answer is.

For the first example, the returned answer is a noun, as it should be, but the model did not know what
exactly the question was attempting to highlight. Similarly for the second example, the model knew

6



that it needed to return a location, but it could not account for the fact that the question asked for a
location "Besides Britain and North America". Since our model is being trained on the relationships
between individual words in a sentence and their connection to the broader context (self-attention), it
may be tough to unscramble complex sentence structures and return the accurate answer.

Let us now look at one final example where the model was accurate but struggled from lack of
understanding:

In this scenario, the question asked for two answers, but the model only returned one answer which
was correct. There probably were not a lot of training examples that required multiple outputs for a
singular question, so it would have been very difficult for it to figure out that it needed to return two
answers in this case. Errors like this were less common but still existent, and we can see that a larger
training data set could potentially resolve this issue by giving the model more exposure to more
unique output requests.

Overall, our model learned how to recognize the differences between question words and return the
corresponding answer type with some variations in accuracy. Complex structures tended to confuse
the model because it did not understand where the question was exactly in the phrase it was given.
Finally, the model struggled with returning multiple outputs when asked for it due to a lack of such
examples in the training data.

7 Conclusion

Natural Language Processing is an intricate and concise system. The slightest error in tensor shapes
or misalignment can result in an entire system to fail or produce drastic changes in output. Within
implementing self attention and character embedding, we encountered and surpassed many hurdles.

Throughout our project, we can see even small improvements can result in significantly better
performing test results such as seen from our improvements after implementing both character
encoding and self attention on top of the baseline model that only incorporates BiDAF attention and
word encoding.

Our model ended up being fairly successful, improving the baseline by more than 4% each. With
more optimizations, we can expect this jump to skyrocket even more. The biggest limitation of our
work has been the time constraint caused by 5 weeks within this class, and also our lack of NLP
experience. Although this class has taught us a lot about NLP basics, I would say self implementation
and thoroughly understanding how the initial BiDAF model worked is another level above what
we’ve done prior in class. In the future we would love to see where the possibilities of creating
multiple layers, maybe implementing the transformer-XL or coattention. Another possible realm of
exploration is how minor changes - non artitectural changes can play a role in improving F1 and EM
scores of our project.

References
[1] R-NET: Machine Reading Comprehension with Self-Matching Networks. Natural Language
Computing Group, Microsoft Research Asia, May 2017, https://www.microsoft.com/en-
us/research/wp-content/uploads/2017/05/r-net.pdf.

[2] https://pytorch.org/docs/stable/generated/torch.amax.html

7



[3] Bansal, Aakash, et al. “A Neural Question Answering System for Basic Questions
about Subroutines.” 2021 IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER), 2021, https://doi.org/10.1109/saner50967.2021.00015.

[4] Robillard, Martin P., et al. “On-Demand Developer Documentation.” 2017 IEEE
International Conference on Software Maintenance and Evolution (ICSME), 2017,
https://doi.org/10.1109/icsme.2017.17.

8


	Key Information to include
	Introduction
	Related Work
	Approach
	Overview of Approach
	Character Embeddings
	R-NET Self-Attention

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion

