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Abstract

Despite impressive improvements in the performance of NLP models in recent
years, commonly used benchmarks often neglect performance on out-of-distribution
data. This misalignment can become problematic when trying to use these models
in production because inference data has a tendency to change over time and thus
be different than the training data. To tackle this problem we extend a method
proposed by Lee et al. [1] whose novel idea is to jointly train a question-answering
(QA) model together with a discriminative model that forces the encoder to learn
domain-agnostic embeddings. While Lee et al.’s model is designed for QA datasets
that only contain answerable questions, we include an additional classifier module
to determine whether a question is answerable or not. Furthermore, we enrich
the training procedure by including various data augmentation strategies such as
backtranslation. Our findings show how effective good data augmentation strategies
can be, but our discriminative model disappointingly fails to yield any substantial
increase in performance.

1 Key Information

Our TA mentor is Elaine Sui. There is no external collaborator, mentor or project sharing.

2 Introduction

Large, pretrained models have become the de facto starting point for most algorithms that achieve
state of the art results in many natural language processing tasks. These models are often trained in
an unsupervised manner by artificially creating language tasks that force the models to learn feature
rich embeddings. This allows for training on large corpora that contains hundreds of millions of lines
of text, which, together with massively scaled models containing possibly billions of parameters, has
shown to be a driving force behind many cutting edge results and applications in NLP.

However, one critical aspect often overlooked in many common NLP benchmarks, which are typically
used as testing playgrounds for developing new models, is a model’s capability to generalize well to
out-of-domain data distributions at inference time. This issue is particularly prelevant for deploying
state of the art models in the real world, as in this case the data distribution often tends to be different
from the training distribution. Hence, it is of critical importance that models designed for real world
usage are trained by also taking into consideration its robustness to distributional shifts in the data.

Unfortunately, state of the art question answering (QA) models have a tendency to overfit to the
training data as opposed to learning more general QA attributes that translate well to other domains
without the need of fine-tuning. Methods must therfore be explicitly put in place during the training
phase to make the model domain-agnostic.
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In the paper Domain-agnostic Question-Answering with Adversarial Training [1] by Lee et al., the
authors present a novel method to train a domain-agnostic QA model that can handle out-of-domain
data distributions. This method does not only address the distributional shift problem, but its generality
ensures that it can be applied to almost any deep QA model without making any modifications to the
model itself.

3 Related Work

Our approach relies on several key concepts within the field of NLP but also on other machine
learning techniques that are commonly used with other data modalities as well.

3.1 Neural Machine Translation

In recent years models such as transformers have achieved amazing state-of-the-art results on many
benchmarks in NLP [2]. However, this is often a result of model sizes being increased and much
more data being available for training. In a low-data environment however, it is more challenging to
use these enormous models as it will quickly lead to the model overfitting. Hence, it is necessary to
use data augmentation techniques to artificially create more data and increase the variance in the data
distribution.

One common data augmentation technique is backtranslation. Backtranslation consists of translating
a sentence back and forth between two languages, with the hope that the translation models will
end up slightly changing the words and phrasing of the sentences, but not their inherent meaning.
Translating from one language to another can be automatically computed at scale with pretrained
neural machine translation models.

Modern neural machine translation models use a probabilistic framework to learn a target sentence
that maximises the conditional probability given a source sentence. By leveraging large amounts of
annotated data translated between two languages, we can use an off the shelf, pretrained translation
model to artificially augment our datasets that are of small size.

3.2 Discriminative Models

Discriminative models became widely popularized through the invention of generative adversarial
networks (GANs) [3]. Interestingly, they first had their breakthrough in the field of computer vision,
but since then they have had profound impact in many other domains as well.

The basis of a discriminative model is to be able to clearly distinguish input samples from one another.
In the case of discriminative models in computer vision for example, their purpose is to detect if an
image belongs to a desired distribution (e.g. real images) or if it is outside of that distribution as in
the case with fake images for example.

Discriminative networks can also be used to train domain-agnostic models by using a discriminator
network to differentiate which domain an input sample belongs to. This approach requires that the
dataset contains datapoints from multiple domains, however if it does then such an approach can be
used to create a more robust model that can handle out of domain data at inference time since it has
been trained to not depend on any domain specific features.

4 Approach

To build a model that has a strong performance on out of domain question answering two main
approaches have been utilized, both based on a pretrained DistillBERT model. In the discriminative
adversarial training approach, the aim was to create domain invariant features that generalize well to
out of domain data. The goal with backtranslation of the out of domain training set with finetuning
was to increase the size of the out of domain dataset by creating paraphrases of the context strings for
each data sample, making finetuning more effective.
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4.1 Discriminative Adversarial Training

We build a domain-agnostic QA model trained by using an auxiliary discriminative model which
forces the learned embeddings to become invariant to the input domain. The algorithm comprises
of two models: a question QA model and a discriminative model. The QA model serves both as
the generative network for the discriminator and as the predictor for the output segments. The
discriminator is trained to differentiate between embeddings originating from different domains. This
forces the generator, which is the QA model, to project the question passage into an embedding space
where the discriminator cannot differentiate between domain-specific embeddings.

The two models are trained in an iterative fashion as commonly done with adversarial networks.
Following [1], the loss we use for the QA model is

L = LQA + λLAdv, (1)
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In the equations above, LQA represents the loss term associated with the QA task, and LAdv is the
loss incurred by the discriminator’s ability to classify correctly the question-prompt embedding. λ is
a hyperparameter that tunes the relative importance of the adversarial loss compared to the QA loss.
A higher λ value places more weight on the adversarial loss, thus resulting in more domain-agnostic
embeddings, however this incurs the risk of restricting the embeddings too much and hence hurt
the model’s performance on the QA task. On the other hand, a too low of a λ value may place too
little importance on the adversarial loss, and consequently make the model suffer from domain-shift
inaccuracies at inference time.

More specifically, Pϕ is a multi-layer perceptron, Pθ is a pretrained BERT model, K is the number of
in domain datasets {Dk}Kk=1, where Dk = {c(k)i ,q
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LQA is the typical QA loss function, and minimizes the negative log likelihood of predicting the
correct start and end positions. The adversarial loss LAdv is designed to maximise the entropy of
Pϕ(l

(k)
i |h(k)

i ), as this would mean that the discriminator is totally confused as to which domain the
embedding vector h(k)

i belongs to. Mathematically, this is equivalent to minimizing the Kullback-
Leibler (KL) divergence between a uniform distribution over K classes, denoted as U(l), and the
discriminator’s prediction.

The discriminator loss is defined as
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which is the standard cross-entropy loss function for a multinomial distribution.

Further, we extend the approach by [1] whose model was specifically only designed for datasets
containing only answerable questions. We incorporate a classifier network whose objective is to
determine whether a question is answerable or not. To this end, we add an extra module head on
top of the [CLS] token to classify whether a question contains an answer inside the prompt or not.
Only if the question contains an answer inside the prompt do we backpropagate the loss from the
answer span classifier through the network. Our answerable classifier consists of a simple multilayer
perceptron model receiving as input the latent embedding of the [CLS] token, and its loss function is
the binary cross-entropy loss. Our complete model is shown in Figure 1.
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Figure 1: Our proposed QA model. Our contribution is an additional classifier network for detecting
unanswerable questions. This is shown in the red box in the top left corner of the figure.

4.2 Backtranslation of out of domain dataset

We have used backtranslation of enlarge the size of the out of domain training dataset ten times. The
backtranslation was done with 10 reference languages: Swedish, Norwegian, Danish, Dutch, German,
Italian, Russian, Spanish, Portugese, and French. For each reference language each of the out of
domain datasets (DuoRC, RelationExtraction, and RACE), were backtranslated. Hence in total, we
had 33 datasets available for out of domain fine tuning (3 original+30 backtranslated datasets). The
out of domain validation datasets were not backtranslated.

Now we describe how a given out of domain dataset was backtranslated using a given reference
language. First, the question paragraph pairs were split up so that each paragraph corresponded to
exactly one question (originally some paragraphs had several questions and answers associated with
them). Subsequently, each context paragraph was split into three parts corresponding to the part
before the answer to the question, the answer itself, and the part of the context after the answer to
the question. After this, the answer in the context was left untranslated, to ensure that the question
answer would still be present in the context. Both the part before the answer and the part after the
answer in the context was then translated to the target language and then translated back to English.
The translation model used was the googletrans python API. It was decided to not back-translate the
question since it has been showed to not be beneficial in [4]. We also did not backtranslate the answer
in the context, as we wanted it to exactly match the answer to the question.

5 Experiments

5.1 Data

The data consist of in-domain and of out of domain data. Each data sample is a dictionary consisting
of a context and at least one question-answer dictionary. An question-answer dictionary contains
a question, a question id, and an answer dictionary. The answer dictionary is either empty if the
question is not answerable or contains an answer string, and the start character index of where the
answer string can be found in the context. The in-domain datasets consists of the three large QA
datasets: SQuAD, NewsQA and Natural Questions containing 50000 training samples each. The
three out-domain datasets are RACE, RelationExtraction, and DuoRC, each with only 127 training
samples. The out-domain training data is also augmented by using backtranslation as described in
section 4.2. A summary of all the data used is provided in Table 5.1.
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Dataset Question Source Passage Source Train Dev Test
in-domain dataset
SQuAD Crowdsourced Wikipedia 50000 10507 -
NewsQA Crowdsourced News articles 50000 4212 -
Natural Questions Search logs Wikipedia 50000 12836 -
out-domain datasets
DuoRC Crowdsourced Movie reviews 127 126 1248
DuoRC BT × 10 Crowdsourced Movie Reviews 127×11 126 -
RACE Teachers Examinations 127 126 419
RACE BT × 10 Teachers Examinations/Synthetic 127×11 126 -
RelationExtraction Synthetic Wikipedia 127 128 2693
RelationExtraction BT × 10 Synthetic Wikipedia/Synthetic 127×11 128 -

Table 1: A summary of all the data sources used during experiments. BT is an abbreviation for
backtranslation.

5.2 Evaluation method

The performance of all the models that have been experimented with have been evaluated with respect
to both the EM and F1 scores, on the out of domain validation dataset. When hyperparameters have
been optimized it has been with respect to the maximal EM score.

5.3 Experimental details

Training the baseline model

The baseline model is a pretrained DistillBERT model, loaded from Huggingface that is sub-
sequently trained on the in domain training dataset (Squad, News QA, and Natural Ques-
tions). The hyperparameters are the same as those provided in the GitHub repository
https://github.com/michiyasunaga/robustqa. Using the same hyperparameters as used to train the
baseline, we also tried to train the baseline for longer, but this did not yield improved results.

Finetuning the baseline model using backtranslated out of domain dataset

The baseline model was finetuned for 10 epochs on the out of domain training set, saving the model
with the highest EM score on out-domain validation. The learning rate used was 10−5. This was then
extended using the out of domain training set obtained through backtranslating the out of domain
datasets (DuoRC, RACE, RelationExtraction) in 10 different languages, the baseline model was
finetuned for 10 epochs with a learning rate of 10−5, saving the model with the highest EM score on
the out-domain validation set. The validation set was not backtranslated.

Domain Adversarial Training

The domain adversarial network was trained by iteratively doing a gradient step on the QA model
and discriminator network respectively. The initial learning rate was the same for both models, but a
learning rate scheduler was used to reduce the learning rate of the QA model over time. Subsequently,
we finetuned the model on the out-domain dataset for three epochs with a learning rate of 10−5, but
this made the performance of the model worse.

5.4 Results

A comparison of the experiments on the validation dataset is shown in 2. Based on these results, the
best model was the baseline model finetuned on the out of domain training set with backtranslations
in 10 languages. Based on this, we merged the train and validation out of domain sets, and did
backtranslation with 10 pivot languages. This was the final model that we submitted to the test
leaderboard, and we obtained a F1 score of 58.988 and an EM score of 41.330. Interestingly, we
note that the discriminative adversarial trained model performs worse when further finetuned on the
out-domain training set. We hypothesize that the reason for this is that the embeddings outputted by

5



Model EM F1
Baseline 31.41 47.57
Baseline+FT 34.555 49.881
Baseline+Train Longer 31.41 47.57
Baseline+FT+BT× 10 37.435 51.558
Dom. Adv. Training 34.50 50.48
Dom. Adv. Training +FT 32.41 48.97

Table 2: The best F1 and EM scores on the out-domain validation datasets. FT is an abbreviation for
finetuning and BT is an abbreviation for backtranslation.

(en) ... published by Sony Computer Entertainment of America, released on the PlayStation 2.

→



... published by Sony Computer Entertainment of America, released on PlayStation 2. (sv)

... published by Sony Computer Entertainment of America, released on PlayStation 2. (no)

... published by Sony Computer Entertainment of America, released on PlayStation 2. (fr)

... published by Sony Computer Entertainment of America, released on the PlayStation 2. (nl)

... published by Sony Computer Entertainment of America, released on the PlayStation 2. (pt)

... published by Sony Computer Entertainment of America, released on the PlayStation 2. (ru)

(en) Two genes located near each other on chromosome 15 (CKMT1A and...

→



Two genes that are close to each other chromosome 15 (CKMT1A and... (sv)
Two genes located close to each other on chromosome 15 (CKMT1A and... (no)
Two genes that are close to each other chromosome 15 (CKMT1A and... (fr)
Two genes located close to each other on chromosome 15 (CKMT1A and... (nl)
Two genes located next to each other in chromosome 15 (CKMT1A and... (pt)
Two genes located next to each other on chromosome 15 (CKMT1A and... (ru)

Figure 2: Example backtranslated sentences. To the left is a part of an context sentence containing
the answer to a question in boldface. On the right hand side are several backtranslated sentences,
indicating the pivot language that was used to backtranslate the sentence.

the domain adversarially trained model contain less information, as they have been trained to be hard
to discriminate.

6 Analysis

6.1 Backtranslation

Here, we consider several examples of the backtranslation and evaluate how well backtranslation
between English and several other languages work. We expect the backtranslation to work best
when the sentence is changed by the backtranslation, but still retaining it’s core meaning. Several
translations from sentences in the RACE out of domain dataset are shown in Figure 2. From Figure 2
we can note several interesting things. First, many of the sentences are very similar to the original
sentences. Thus, it may be beneficial to find pivot languages that gives rephrased sentences whilst
preserving the meaning well. We leave it to future work to explore this at greater depth. Second, we
note that it’s potentially problematic to separately backtranslate the part before and the part after the
answer, as the answer may provide important context for the translation.

6.2 Model errors

To better understand the behaviour of the model finetuned on backtranslated sentences, we analyse
some of its errors.
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Example 1

Context: The Linth is a Swiss river that rises near the village of Linthal in the
mountains of the canton of Glarus, and eventually flows into the Obersee section
of Lake Zurich.
Question: What river does Linth turn into?
Correct answer: Lake Zurich
Model answer: Swiss river

This case highlights how the model has learned at least some basic understanding of language and
its meaning, as Swiss river could be a plausible answer to such a question. However, it lacks the
sharpness to be able to reason at a deeper level to find the correct answer. In some sense the model
has outputted what a human might have guessed after taking just a very quick glance at the context.

Example 2

Context: The Yellow River Piano Concerto is a piano concerto arranged by a
collaboration between musicians including Yin Chengzong and Chu Wanghua, and
based on the Yellow River Cantata by composer Xian Xinghai.
Question: What instrument is Yellow River Piano Concerto scored for?
Correct answer: piano
Model answer: piano concerto arranged by a collaboration between musicians
including Yin Chengzong and Chu Wanghua

In this case we see an example of how the model predicts the correct start token but fails on predicting
the correct end token. Considering that most answers in the datasets are very short, adding a
regularization term on the length of the answer would have probably improved upon the results.

7 Conclusion

Working on improving a pretrained DistillBERT model has been useful for learning more about
transformer models. Experimenting with backtranslation and domain adversarial training has been
useful for learning about both modern question answering systems at depth as well as giving the
authors an increased technical expertise how to combine adversarial training approaches with natural
language processing tasks.

The work has showed how backtranslation of a small out of domain dataset combined with finetuning
on this augmented dataset may improve a question answering model to answer out of domain
questions. This approach gave an F1 score of 58.988 and an EM score of 41.330 on the held out out of
domain test set, a sizeable improvement over our considered baseline model, a pretained DistillBERT
further trained on an in-domain dataset. We have also highlighted some potential difficulties with
discriminative adversarial training for learning domain invariant features on this task. However, it
should be noted that this work is limited in scope in that only three out of domain datasets were
selected and this may not be representative of the datasets that may be encountered in a practical NLP
setting where out of domain model performance is important.

We leave for future work to do a more careful ablation study of which languages are most useful
to use as pivot languages for backtranslation as data augmentation. Another interesting avenue for
future work is to analyze the dependence on the number of in-domain datasets available for training
on the performance of the discriminative adversarial training approach. We hypothesize that a larger
number of in domain training datasets will imporve the performance of the discriminative adversarial
training.
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