
Comparing Approaches to Question-Answering on
SQuAD 2.0

Stanford CS224N Default Project (IID SQuAD)

Ray Iyer
Department of Computer Science

Stanford University
rri@stanford.edu

Abstract

In this project, we qualitatively and quantitatively compared two different ap-
proaches to the question-answering task on the SQuAD 2.0 dataset: 1) BiDAF:
a bi-directional attention flow approach with recurrent neural networks (RNNs),
and 2) QANet: a non-recurrent Transformer-based approach that relies on position
encoding, convolutions, and self-attention. Our goal was to systematically evaluate
claims made by the authors of the QANet paper that their proposed model is both
faster to train and evaluate as well as exhibits better performance than traditional
recurrence-based architectures. We were able to significantly improve the original
BiDAF baseline by adding character-level embeddings to the input layer as well
as introducing an MLP "fusion function" as a post-processing step to the attention
flow layer, achieving 60.33 EM and 64.19 F1 on the dev set. Furthermore, we
trained multiple configurations of QANet by varying the number of stacked encoder
blocks and self-attention heads to evaluate the performance/model size trade off.
Our best-performing QANet model had 8 attention heads and 7 model encoder
blocks with layer dropout, achieving 62.181 EM and 65.694 F1 on the test set.

1 Key Information to include

• Mentor: Christopher Wolff

• External Collaborators (if you have any): N/A

• Sharing project: N/A

2 Introduction

In task of reading comprehension, or question answering (QA), a model is given a paragraph (context)
and a question about that paragraph (question) as input. The goal is to output a correct answer to
the question, where the answer is a span (i.e., excerpt of text) from the context. In some cases, the
question cannot be answered using the provided paragraph. This task is difficult even for humans
– on the SQuAD 2.0 dataset, the official human performance against our evaluation metrics is not
perfect. In the modern world, where the amount of information is continuously expanding and
increasingly intractable for humans to parse through manually, it will be even more important to
develop robust AI-driven solutions to precisely and accurately answer natural language questions
about large bodies of unstructured text. This well-defined task represents the first step towards
building such a generalized system.

In the past several years, the state-of-the-art models to tackle this task have been built on top of large
pre-trained contextual embeddings (PCE), the most prominent among these being the Bidirectional
Encoder Representations from Transformers (BERT) [1]. One reason for the success of PCE
models is that unlike context-free embeddings like GloVE, they produce different embeddings for

Stanford CS224N Natural Language Processing with Deep Learning



individual words based on the surrounding semantic context. However, in this paper we intentionally
focus on non-PCE approaches since they are more amenable to end-to-end training, enable deeper
customization, and are more instructive for student researchers to gain experience in building models
from scratch.

In this paper, we train, evaluate, and compare two different approaches to the QA task on the Stanford
Question-Answering Dataset 2.0 (SQuAD 2.0). The first is Bi-directional Attention Flow, which
is provided as a baseline implementation [2]. We augment this model by adding character-level
embeddings to the input layer and introducing an MLP fusion function in the attention flow layer,
which both produce significant empirical performance gains. The second is QANet, which produced
state-of-the-art performance on the original SQuAD dataset prior to the rise of PCE models [3]. We
implement this architecture largely from scratch, using existing implementations for the self-attention,
position encoding, and depthwise separable convolution sub-modules and replacing the original
paper’s variant of context-to-query attention with the BiDAF attention module.

In the remaining sections, we map out the landscape of existing work that inspired this project,
describe our BiDAF and QANet approaches in greater technical detail, outline the setup and results
for our experiments, analyze these results both quantitatively and qualitatively, and finally conclude
with our key takeaways and directions for future research.

3 Related Work

Until the publication of the QANet paper, the most successful models on SQuAD 1.0 shared two key
characteristics: 1) a recurrent network to process sequential input, and 2) an attention mechanism to
capture long-term dependencies. Bidirectional Attention Flow (BiDAF), our baseline model, is an
example of an architecture that follows this general design.

In 2017, the Transformer architecture was proposed, and it quickly drove state-of-the-art performance
on a multitude of adjacent tasks, including machine translation, language generation, and language
modeling [4]. A core aspect of the Transformer was its exclusive use of attention mechanisms to
replace the traditional recurrent neural network in an encoder-decoder configuration.

The QANet architecture is heavily inspired by the Transformer. The authors point out that since
sequential recurrent networks cannot be parallelized, they are often slow in both training and inference,
which negatively effects both the research/experimentation process as well as downstream deployment
(e.g., real-time applications). To solve this problem, the authors eliminate recurrent networks
altogether and instead rely exclusively on feed-forward convolutions and self-attentions to separately
encode the context/query, as well as traditional attention between the context and query, such that
the overall computation is more easily parallelizable. The key motivation behind this model design
is that convolution captures local textual structure, self-attention learns the global dependencies
between word pairs, and context-query attention learns the holistic query-aware context vector to
feed subsequent layers and eventually inform the output answer [3].

Due to the rapid rise of PCE methods, QANet was not officially evaluated on the new SQuAD 2.0
dataset, which contains a significant proportion of questions that cannot be answered. Thus, the goal
in our paper was to validate the claims of the original paper by building a QANet model end-to-end
and systematically evaluating it on the refreshed dataset, as well as comparing it to the traditional
RNN-based architecture of our baseline BiDAF model.

4 Approach

4.1 Bi-directional Attention Flow (BiDAF)

The BiDAF model was provided as a complete implementation for our baseline. For additional
conceptual and architectural details, please refer to the original paper [2]. In this project, we
augmented this baseline model in two ways:

Character-Level Embeddings In the input layer, we add character-level embeddings. This allows
the model to condition on the internal structure of words and better handle out-of-vocabulary words.
To produce this per-word character-level embedding, we utilize Convolutional Neural Networks

2



Figure 1: QANet architecture (left) with Encoder Block (right) in detail [3]

(CNNs). Specifically, our pre-trained character embeddings are used as inputs to a 1D CNN, which
convolves along the length of the word. Since word lengths can differ, we then max-pool over the
width of the word to obtain a fixed-size vector for each word. We then concatenate this character-level
representation to our existing GLoVe embeddings for each word in the context and query before
passing it to the highway network.

Attention Flow Fusion Function In the bi-directional attention flow layer, the original paper uses
a simple concatenation function across the various query-to-context and context-to-query attention
representations as its final output:

β(h, ũ, h̃) = [h; ũ;h ◦ ũ]

However, they propose that the fusion function β can be any arbitrary trainable neural network
and highlight various options in Appendix B [2]. In this project, we tested applying a multi-layer
perceptron (linear layer followed by a ReLU) directly after concatenation:

β(h, ũ, h̃) = max(0,W[h; ũ;h ◦ ũ] + b)

4.2 QANet

The QANet model can be broken down into the following sequential modules:

Input Layer This layer is similar to the input layer of the BiDAF model. Unlike in the BiDAF
model, we project the concatenated word and character embeddings for each word down to the
universal hidden size of 128 prior to passing them to the Highway network, and we allow the
character embeddings to be fine-tuned by the training process.

Embedding Encoder Layer This layer consists of a single Encoder Block, which is explained
in detail here and also used in the model encoder layer. The weights for the query and question
embedding encoder are shared. The Encoder Block consists of the following basic structure, as seen
on the right side of Figure 1:

1. Position encoding
At this step, we apply a sinusoidal function at multiple frequencies to explicitly encode the
notion of position/order of single words in the context and query embeddings [4]; otherwise,

3



this information would be lost in the subsequent convolutional and self-attention layers,
since in contrast to RNNs they do not have an inherent sense of sentence order.

2. 1D convolution layer × n
The original paper proposes depthwise separable convolutions as opposed to traditional
convolutions, claiming better efficiency and generalization; we replicate this in our imple-
mentation. For the embedding encoder, we use 4 convolutions with a kernel size of 7 and
filter size of 128.

3. Masked multi-headed self attention layer
This is the attention mechanism originally proposed in the Transformer paper [4]. The
original paper uses 8 heads, but in our experimentation we vary this and assess the results;
more details below.

4. Feed-forward layer (linear -> ReLu -> linear)

Additionally, we apply layer normalization [5] and residual connections between each sub-layer
operation, such that for each sub-layer f the output is

out = f(layernorm(x)) + x

Within the Encoder Block, we adapted our position encoding and self attention sub-modules from a
reference PyTorch implementation [6]; all else was implemented and tested from scratch.

Context-Query Attention Layer The purpose of this layer is similar to the analogous layer in the
BiDAF model: to construct a query-aware context vector for use in downstream modeling layers.
While the original paper differs from BiDAF by utilizing a Dynamic Coattention Network [7] in
this layer claiming a "little benefit" empirically, in our QANet implementation we use the identical
implementation from our BiDAF baseline. See the BiDAF paper for a more detailed explanation of
this attention mechanism [2].

Stacked Model Encoder Layer In this layer, we create a stack of 7 Encoder Blocks with the
same parameters as the embedding encoder, except that 2 convolutions are applied instead of 4. The
entire stack is repeatedly applied 3 times, where the weights are shared across the repetitions, which
produces outputs M1,M2 and M3.

Output Layer We produce two probability distributions over each position in the context that
represent the predicted probability that a given position is the start or end of the true answer span,
respectively. Mathematically, we return:

p1 = softmax(W1[M1;M2] + b1), p
2 = softmax(W2[M1;M3] + b2)

where W1, b1,W2, b2 represent trainable linear layers.

5 Experiments

5.1 Data

The dataset is a version of the official SQuAD 2.0 dataset modified for CS224N.[8] Specifically, the
train set is comprised of 129,941 examples, all taken from the official SQuAD 2.0 training set. The
dev set is comprised of 6078 examples, which roughly corresponds to half of the official dev set
randomly selected. The test set is comprised of 5915 examples, containing the remaining examples
from the official dev set plus some hand-labeled examples. Each example consists of a (context,
question, answer) triple, consistent with the QA task specified above. Every answerable question
in the dataset has three answers provided, each from a different human labeler, due to the natural
variance of human reading comprehension and the potential for multiple correct answers.

5.2 Evaluation method

We track three evaluation metrics to compare to my baseline BiDAF model. Exact Match (EM) and
F1 scores are the official leaderboard evaluation metrics for SQuAD 2.0. EM is a binary measure
of whether the model output matches the ground truth label exactly. F1 is the harmonic mean of

4



Figure 2: Train and Dev Loss: BiDAF (orange), BiDAF + char (red), BiDAF + char + fusion (pink),
Small QANet (grey), Med QANet (dark blue), Orig QANet (light blue), QANet + Layer Dropout
(orange)

precision and recall, which is less strict than EM. Overall, we take the maximum F1 and EM scores
across the three human labeled ground truth answers, which makes our evaluation process more
forgiving to the natural variation of technically correct answers. Finally, Answer vs No Answer
(AvNA) is a debugging metric used to judge the binary classification accuracy of the model when
predicting whether an answer exists or not.

5.3 Experimental details

All models were built in PyTorch and trained on an Azure NC6 VM with 6 vCPUs, 112 GiB RAM,
supported by an NVIDIA Tesla K80 GPU.

5.3.1 BiDAF

We trained all of our BiDAF variants with the default optimizer (Adadelta), learning rate (0.5),
dropout probability (0.2), and other hyperparameters established in the starter codebase.

5.3.2 QANet

We trained our QANet models with the exact specifications of the original paper: using L2 weight
decay with λ = 3× 10−7, dropout on word and character embeddings with probability 0.1 and 0.05
respectively, and general dropout between every 2 layers with probability 0.1. We also tested the
effects of stochastic depth (layer dropout) [9] by training our largest QANet model both with and
without it. When used, we followed the original paper by dropping a convolutional or self-attention
sublayer in an Encoder Block with probability l

L (0.1), where l is the sub-layer 1-index and L is the
total number of sublayers in the stack of encoder blocks.

Since our hardware did not have the resource capacity to train with the full 32 batch size for our
largest QANet models, we used the technique of gradient accumulation to pool gradients every two
batches, which allowed our effective batch size to match the original paper [10].

5



Figure 3: Dev Results: BiDAF (black), BiDAF + char (pink), BiDAF + char + fusion (purple), Small
QANet (dark orange), Med QANet (turquoise), Orig QANet (light orange), QANet + Layer Dropout
(black)

Model Batch Size Train Time Dev EM Dev F1 Test EM Test F1
Baseline BiDAF 64 3h11m 57.049 60.686 * *
BiDAF + Char Emb 64 4h49m 59.368 62.839 * *
BiDAF + Char + Fusion Fn 64 4h12m 60.33 64.19 * *
QANet (2 heads, 3 enc blks) 64 3h32m 62.95 67.00 * *
QANet (4 heads, 5 enc blks) 32 6h42m 63.737 67.507 60.896 64.654
QANet (8 heads, 7 enc blks) 16 13h45m 63.27 67.13 * *
QANet + Layer Dropout 16 14h3m 64.54 68.14 62.181 65.694

Table 1: Experimental Results

5.4 Results

As expected, QANet generally performed higher than our BiDAF baseline and all of its variants, which
is consistent with the results on the official leaderboard for the SQuAD 1.1 dataset. Additionally, just
as the BiDAF model EM and F1 scores drop between SQuAD 1.1 and SQuAD 2.0, we see a similar
drop in empirical performance for our QANet model on SQuAD 2.0 compared to what the original
paper reported on SQuAD 1.1. This is also consistent with our expectations, since the newest version
of the dataset introduces questions that cannot be answered, which intuitively makes the task more
difficult no matter the architecture.

It is surprising that the simple addition of an MLP fusion function to post-process the concatenation
of the attention flow outputs led to such a high empirical performance gain on our BiDAF model:
+0.962 EM and +1.351 F1 on the dev set. Strictly, this fusion step reduces the hidden dimensionality
of the output by a factor of 4, so perhaps the performance gain arises because the model is forced to
prioritize the most important information to pass downstream.

6



The original QANet paper claimed that the model is 3x to 13x faster in training on SQuAD 1.1. From
our experimentation, we have reason to be skeptical. While our smallest QANet model which fit a
batch size of 64 into our GPU memory was able to train faster than our BiDAF + Char models of
equivalent batch size, it was still not by a factor of 3. Clearly, on our hardware the performance gains
from parallelization are offset by the fact that this Transformer-based model is much larger than our
BiDAF baseline.

Curiously, we observe that the largest QANet model, which follows the specifications of the original
paper, performs slightly worse than the model with 4 attention heads and 5 stacked model encoder
blocks. We suspect this relates to our use of stochastic depth, which will be explored more in the
section below.

6 Analysis

The Model Size/Performance Tradeoff Overall, it was compelling to observe how relatively close
the performance of our various QANet models were while the training speed varied so drastically due
to our batch size constraints. Our results suggest that it is possible to build small models for question
answering that match the performance of much larger models while still being reasonably efficient
for end-to-end training, evaluation, and iteration in resource-limited research and applied settings.

It was counter-intuitive that our QANet model performance dropped when we increased the number
of attention heads from 4 to 8 and the number of encoder blocks from 5 to 7 to match the original
paper. Qualitatively, we hypothesized that the smaller model was still able to generalize well even
though it does not use aggressive regularization. In contrast, as the model became larger, it was more
likely to overfit on the training data. To test this hypothesis more thoroughly, we trained an additional
model with stochastic depth (layer dropout) implemented as described in the original paper, aiming
to conduct an ablation analysis.

Layer Dropout Ablation The results of our ablation study confirmed our hypothesis. Our large
QANet model with stochastic depth clearly outperformed the medium sized QANet model. However,
we note that it took almost 1.5M iterations for this performance gap to emerge, and 2M iterations for
the gap to become clear, as depicted in Figure 3. Again, this confirms the intuition that deeper models
require more training, but when properly regularized can deliver solid performance improvements.
We also note that our QANet model with stochastic depth led to an even greater relative performance
increase on the test set than the dev set: +1.285 EM, +1.04 F1 test vs +0.803 EM, +0.633 F1.
Qualitatively, this makes sense given the design and motivation behind stochastic depth: we are
forcing our model to learn the correct patterns even on subsets of its own architecture, such that the
individual components become more robust and thus generalize better to unseen data.

7 Conclusion

In this paper, we compared two different approaches to the question-answering task on SQuAD 2.0:
1) Bi-directional Attention Flow, and 2) QANet. The former represented a traditional approach to the
problem, utilizing an RNN to process sequential input and an attention mechanism to capture long-
term dependencies. In contrast, the latter took inspiration from the Transformer model to do away
with recurrences completely and replace them with feed-forward convolutions and self attentions such
that the overall computation is more parallelizable. With the BiDAF model, we found that adding
character-level embeddings and an MLP fusion function over the concatenation of attention flow
outputs led to a significant empirical performance gain over the baseline. With QANet, we explored
the tradeoff between model size and performance, finding that larger models require more aggressive
regularization approaches like stochastic depth to combat overfitting and maintain strict performance
gain; we also found that smaller models can still achieve comparatively strong performance while
training far faster in resource-limited settings. Due to time and resource constraints, we were not able
to vary the number of attention heads/stacked encoder blocks independently and run ablation studies
on the sublayers within the encoder block, nor were we able to explore the effects of weight sharing
across the encoder blocks. In the future, more systematic experimentation is required to assess and
interpret the influence of individual components on the performance of a large, complex model like
QANet. Given the empirical success of traditional visual recognition techniques like convolution and

7



stochastic depth on language tasks we’ve seen in this project, additional research may also investigate
how NLP approaches like the Transformer might drive improvements in visual recognition tasks.

References
[1] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of

deep bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018.

[2] Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional
attention flow for machine comprehension. CoRR, abs/1611.01603, 2016.

[3] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mohammad Norouzi,
and Quoc V. Le. Qanet: Combining local convolution with global self-attention for reading
comprehension. CoRR, abs/1804.09541, 2018.

[4] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.

[5] Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. ArXiv,
abs/1607.06450, 2016.

[6] Bang Liu. https://github.com/BangLiu/QANet-PyTorch.

[7] Caiming Xiong, Victor Zhong, and Richard Socher. Dynamic coattention networks for question
answering. CoRR, abs/1611.01604, 2016.

[8] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable
questions for SQuAD. In Association for Computational Linguistics (ACL), 2018.

[9] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q. Weinberger. Deep networks with
stochastic depth. CoRR, abs/1603.09382, 2016.

[10] Mayukh Bhattacharyya. Gradient accumulation: Overcoming mem-
ory constraints in deep learning. https://towardsdatascience.com/
gradient-accumulation-overcoming-memory-constraints-in-deep-learning-36d411252d01.

8

https://github.com/BangLiu/QANet-PyTorch
https://towardsdatascience.com/gradient-accumulation-overcoming-memory-constraints-in-deep-learning-36d411252d01
https://towardsdatascience.com/gradient-accumulation-overcoming-memory-constraints-in-deep-learning-36d411252d01

	Key Information to include
	Introduction
	Related Work
	Approach
	Bi-directional Attention Flow (BiDAF)
	QANet

	Experiments
	Data
	Evaluation method
	Experimental details
	BiDAF
	QANet

	Results

	Analysis
	Conclusion

