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Abstract

In this project, we aim to incorporate the Transformer-XL model[l] into the
SQuAD QA system and determine if the model is better performing than vanilla
transformer in QA tasks. To approach this final goal of our project, we completed
two intermediate goals: the first goal was to add character embedding to the BiDAF
model using character-level convnets, as described in[2]]. The second goal we
completed was to adapt the transformer model and apply to the QA model. This
method was previously implemented in QANet[3]], which we used as a reference in
developing our QANet. Because the Transformer-XL model uses segment-level
recursion and is mainly developed for text generation tasks, we point out some
possible limitations to apply such model to reading comprehension tasks, and that
it might not be an improvement over QANet. The results for the Transformer-XL
model were F1: 66.13, EM: 63.06 whereas the QANet scored F1: 67.92, EM:
64.31. Because of different model configurations and less training time for the
Transformer-XL model, it can only be concluded that Transformer-XL had similar
performance to vanilla transformer QANet for the RC task. Lastly, some error
modes in the model prediction are discussed.
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2 Introduction

Machine reading comprehension (RC) and question answering (QA) tasks have gained major pop-
ularity in the past few years. This project focuses on such task on the SQuAD 2.0 dataset. Given
a question and a context paragraph, the objective of SQUAD 2.0 QA system is to output a span of
the context paragraph as the answer. A number of models were used and tested to tackle such task,
and our group focuses on two specific models: QANet [3l], which uses the vanilla transformer model,
and Transformer-XL [1]] that would yield a possible performance increse over the vanilla transformer
model. Improvements over the baseline BIDAF model was also discussed in this project by including
convnet character-level embedding|2]][4].

The major challenge of the SQuAD QA task is to process long paragraphs, with the context consisting
of over 200 words. Two models are discussed in our project. One of which is using the recurrent
neural network (RNN), as exampled by the bi-directional attention flow (BiDAF)[2]. However, the
potential drawback of RNN models is the issue of vanishing gradient, which poses a challenge in
preserving information over long context. Another method is to use the transformer model to process
the input. QANet is an example of such model[3]]. The tranformer model uses multi-head attention
and multi-layer to process long sequences of text. It is claimed to be both faster and able to achieve
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higher scores[3]]. The Transformer-XL model is an extension over the vanilla transformer model that
allows segment-level recurrence with state reuse[[L]. In text-generation tasks, vanilla transformers
are unable to achieve long-term dependencies over its context length, while it is achievable with
Transformer-XL models by caching and reusing the previous hidden states[1]]. The ability to preserve
long-term context would also potentially increase performance of processing long context paragraphs
for QA tasks. However, the segment-level recurrence mechanism of the Transformer-XL model also
means that the context paragraph would need to be segmented into fixed-length context, which has
two potential drawbacks: breaking the context as a result of segmentation, and limiting the span of
the answer to be inside each segmentation. In our project, the QANet would be the backbone to apply
the Transformer-XL model.

3 Related Work

3.1 Transformer

Recurrent Neural Networks (RNNs) have dominated for years in sequence-to-sequence problems,
but the architecture has a great limitation that when working with long sequences, their ability to
retain information from earlier elements was lost. It has been found that LSTM language models
use 200 context words on average([Sl]. Even with Long-Short-Term-Memory (LSTM), the recurrent
nature still limits its performance. In the famous paper “Attention is all you need" [6]], a new attention
mechanism was introduced which extracts information from the whole sequence in the form of a
weighted sum of all the past encoder states. This allows the decoder to assign greater weight or
importance to a certain element of the input for each element of the output.

32 QANet

QANet [3] is the first work that fully utilize transformer architecture in the Question Answering
problem setup on the SQuAD dataset. They replaced the traditional RNN components in embedding
and encoder layers with transformers and obtained a significant performance boost. On top of the
transformers which captures global relation, convolution operations are also utilized for modeling
local relations.

3.3 Transformer-XL

Transformer-XL is a neural architecture proposed by Dai et al. [1]] to better leverage long-term
dependencies in text generation tasks. As discussed before and in [7], RNNs, in particular LSTM
networks, are difficult to optimize in processing long context because of gradient vanishing and
explosion. By using a transformer model, the results outperformed LSTM models by a large
margin[8]. However, the model in [§]] is performed on fixed-length segments without any information
flow between the segments. It could not capture longer-term dependencies beyond the designated
context length. Transformer-XL introduced the algorithm of segment-level recurrence that enables
using the cached hidden states from the previous segment in processing the new segment[1]]. The
authors report significantly longer dependency than both RNN and transformer models, and also
improvements in calculation speed in both short and long sequences. Although the model was not
initially developed for the RC task, performance increase might be seen over QANet.

4 Approach

4.1 Character-Level Embedding

The first model we implemented was adding character embeddings to the BiDAF model. The code is
developed on our own with the architecture referenced from [4]. The character embedding layer was
a 1D convnet. It is shown that simple CNN with little hyperparameter tuning and static vectors would
achieve good results in sentence classification benchmarks|4]], hence we propose to use convnet for
word embeddings as well for the development of the transformer model. The architecture of the
model is similar to one shown in[I]in the Appendix. The figure shows 2-channel convnet embedding
on the word level, whereas our model applies a one-channel convnet on the character level. Before
applying convnet, a dropout layer is applied on the input. Let x; be the k-dimensional character



vector for the ¢-th character in a word. A word of length n is represented as
X1:in = [XI;X2§--~;Xn] (])

A convolution operation uses a filter w € R"* which is applied to a window of h characters to
produce a new feature. Then, a feature c; is generated from a window of characters x;.; 1,1 by

ci = f(W-Xiiyn—1+b) 2)
where b is a bias term and f is a non-linear function, which we used ReLU. The filter is applied
to each window of words to produce a feature map ¢ = {c1, ¢, ..., ¢n—p+1}- Then, a maxpool is

applied over the feature map and take the maximum value ¢ = maz{c} as the feature corresponding
to this filter. The window size we used for this model was 3. [2] used a hidden layer size of 100, but
because of our computational resources are very limited, our output layer size for the convnet was set
to 20. The character output was then concatenated with the word output h; = [h.;; h,,;], and then
passed to the highway network.

4.2 Transformer

In order to incorporate ideas from transformer-xI into QA probelm, we first implemented a vanilla
transformer model with reference to QANet[3]]. Here we’ll talk about implementation details of
vanilla transformer.

Although the bi-directional LSTM model used in the RNN encoders in the baseline model cap-
tures information flow in both directions with long-term dependency, the transformer architecture
introduces the self-attention mechanism which can directly access all positions in the sequence,
equivalent to having full random access memory of the sequence during encoding and decoding. This
advantage not only enables easier learning of long-term dependency, but also make the model easily
parallelizable and more efficient to train and evaluate (although in practice this benefit seems mostly
work with multiple gpus).

Our implementation of the transformer, for which we take QANet as a refernece, could be summarized
in the following manner:

(1) Input layer: both the pre-trained word embedding and character embedding are taken as model
input and processed with convnet. A two-layer highway network was adopted at the end.

(2) Encoder layer: The encoder layer consists of 4 convolution layers, a multi-head self-attention
layer and a feed-forward layer. Residual connections and layer-norms are also utilized for stabler
training.

(3) Context-Query Attention Layer: First, a trilinear similarity function f is defined for a context
word ¢ and query word ¢: f(q,c) = Wy(q,c,q (O ¢), with () being element-wise multiplication
and W, a learnable weight. Then the similarity matrix is computed for each context, query pair
S = f(Q,C). And the context-to-query attention A and the query-to-context attention B are defined
as:

A=5.QT
_ =T
B=5§.5 .Cc7T
in which S is row-normalized S and § is column-normalized .S, both using softmax function.

(4) Model Layer: After the CQ-attention is calculated, for a context ¢, we take the rows a, b of A,
B and form the input to the encoder layers as [c, a, ¢ () a, ¢ () b]. The encoder is the same as in the
encoder layer, and 3 repetitions of the encoder is used, which share the same weights.

(5) Output Layer: Let the output of the 3 encoder layers from model layer to be M, M; and M,
the output probability for the starting and ending positions are:

Pstart = s0ftmax(W1[Mo; M])

Pend = softmax(Wa[My; Ms))
with W, and W5 trainable weights.

The weights of the context and question encoder, and of the three output encoders are shared. For
each encoder layer, a positional encoding using sin and cos functions with varying frequency is added
to the input. The model architecture and one encoder block is shown in[2]in Appendix.



4.3 Transformer-XL

The main limitation of the vanilla transformer model is its ability to scale up with the length of the
context length. There are two main components of the Transformer-XL model to address this issue to
effectively process long paragraphs:

(1) Segment-level recurrence: This reuses the previously-calculated hidden state when processing
the next segment. It caches the previous state designated by its memory sequence length and its
information is reused in calculating the current state. Let A" be the n-th layer hidden state of the 7-th
segment, then, the n-th layer hidden state for the next segment of 7 + 1 would be:
Rt = [SG(R ) ki)
T T
G ki, 0 = hr+1W h‘r+1 Wy ’hT+1W

hY., = Transformer — Layer(q} 1,k 1,v7 1)

Where SG(+) stands for stop-gradient, and W stands for model parameters.

(2) Relative positional encoding: To apply segment-level recurrence, the positional information
should be coherent when the states are reused. Using absolute positional encoding would result in
same positional encodings in different states. Hence, relative positional encoding should be used.
Equipping the recurrence model with relative-positional encoding, the final NV-layer Transformer-XL
model with a single attention head can be summarized below:

Forn=1,...,N:
hn 1 [SG( n— 1) hn—l]

q k,n n __ hn IWnT hn 1W7LT hn 1W'ILT
s s Ur
A:'Lz,j _q‘r;rkn +quWk RRl —J +u kTJ +’UTW7€ RRl —J

al = Masked — Softmaz(AZ)v?
o" = Layer Norm(Linear(a™) + h"™1)
h} = Positionwise — Feed — Forward(o})

where m is the memory sequence from the previous segment, and R is the sinusoidal relative encoding
matrix.

(3) Transformer-XL in QA: To apply Transformer-XL in QA tasks, the model is incorporated to the
QANet model. As discussed above, the core component of Transformer-XL is to segment the context
for recurrence. There are two ways to apply segment-level recurrence: one is to treat batches as
segments and use the memory sequence from the previous batch as input to the next batch. However,
because different questions do not have clear contextual relations to each other, we instead choose
to segment the context paragraph to each question and perform segment-level recurrence on each
context sequence. The number of segments would be dividing the context length over the memory
sequence length. The main drawback of this approach is that breaking a whole context into segments
would potentially break the continuity in the context, and the previous segments would have no
information about the later segments. In our approach, only the context paragraph is segmented,
while the question paragraph is processed in whole. Because of the drawback mentioned above, we
anticipate that the Transformer-XL model would not perform as well as the QANet model, but would
still outperform the baseline model.

4.4 Implementation and Code References

The starter code for data loading, BiDAF model, training and testing was provided by the
course instructors (https://github.com/michiyasunaga/squad). The implementation of the vanilla
transformer QANet is referenced from the code from https://github.com/heliumsea/QANet-
pytorch. The implementation of the Transformer-XL model is referenced from the code from
https://github.com/kimiyoung/transformer-xl.



Our team mainly (1) implemented the character-level embedding extension for BiDAF, (2) understood
and implemented the models of QANet for testing and for the Transformer-XL backbone, and (3)
incorporated the Transformer-XL segment-level recurrence to the QANet model.

5 Experiments

5.1 Data

The dataset is SQuAD 2.0 [9] provided by the instructors of this course
(https://github.com/michiyasunaga/squad). = The train set contains 129,941 examples, the
dev set contains 6078 examples, and the test set contains 5915 examples.

5.2 [Evaluation method

The metrics for evaluation mainly include F1 score, exact match (EM), answer vs no answer (AvNA),
and negative log likelihood (NLL). Exact Match is a binary measure (i.e. true/false) of whether the
system output matches the ground truth answer exactly. F1 is the harmonic mean of precision and
recall. Because the SQuAD task sometimes contains questions that no answer could be extracted from
the context paragraph, the model should determine if an answer exists for a certain question-context
pair, or otherwise should produce "N/A" for no answer. AvNA is a metric that measures its answer
vs no answer predictions. The NLL loss of the model is determined by the sum of NLL loss of the
predicted start and end positions of the answer segment in the context paragraph.

5.3 Experimental details

All models were trained for 30 epochs, with the exception of Transformer-XL, which was trained for
17 epochs because of 24-hour time limit set on the VM was reached. The models use pretrained word
embeddings from the GloVe model, and Gaussian randomized character embeddings. Configuration
of the BiDAF model with character-level embeddings is the same as the provided in the starter code.
Model and training configurations for QANet and Transformer-XL are shown in table

Configuration Char-Embed | QANet-mid | QANet-large | Transformer-XL
Epochs 30 30 30 17
Batch Size 64 64 64 32
Dropout Rate 0.2 0.1 0.1 0.1
Hidden Layer Size 100 128 256 128
Num. Self-Attention Heads - 4 8 8
Self-Attention Head Dimention - 32 32 16
Memory Sequence Length - - - 256
Training time (hrs) 5 10 14 24 (capped)

Table 1: Model configurations.

The optimizer used for both BiDAF and transformer models was Adadelta, and the learning rate
for all models was set at 0.5. 3, and (35 for all transformer models were set to be 0.8 and 0.999
respectively.

5.4 Results

Metric | Baseline | Char Embed | QANet small | QANet large | Transformer-XL
F1 60.86 63.43 65.31 67.92 66.13
EM 57.69 60.14 62.76 64.31 63.06
AvVNA 67.13 70.01 72.19 74.27 71.49
NLL 3.05 3.00 297 3.07 2.52

Table 2: Results on dev set.

Table 2] shows the dev set results of the different models we have developed, and table 3] shows the
test set results for the Transformer-XL model. From table 2} including character-level embedding



F1 EM
64.575 | 60.913
Table 3: Test set results of Transformer-XL

and using QANet increases scores for all metrics except for NLL loss, which was similar for all
models mentioned above. Also, by incorporating the Transformer-XL model, the performance slightly
decreased compared to vanilla transformer QANet. However, because the Transformer-XL model
did not finish all 30 epochs, we can only conclude that Transformer-XL had similar performance
to the vanilla transformer model with the hyperparameters we set. The training time, however, was
significantly larger for the Transformer-XL model.

6 Analysis

Table [] in the Appendix section shows the examples of errors occurred when performing the
Transformer-XL model. From the table, we can see that the errors fall in several categories:

1. Failure in understanding the sentence context and provide an answer. Although the context
did contain certain keywords that overlap with the question such as "Economy, Energy and
Tourism", it did not explicitly contain certain words in the question such as "one of the".
Hence, the model would not be able to locate the answer span in the context.

2. Ambiguities in context-question matching. The question mentioned "directive" and "1994",
and had clear overlap of the same words in the context. However, the prediction was another
directive created in 1996.

3. Imprecise answer boundaries. The prediction answered the time period correctly, but it
did not include the definite article "the" in front of the time period. There are two possible
reasons: one is that it requires external knowledge that it is more natural to include the
definite article when describing a decade, and the other is that the character-level embedding
could be tuned to recognize the postfix "s" that the model could produce better predictions.

4. Possible OOV word. "Romanesque" in the answer is a possible OOV word that the model
could not properly embed.

7 Conclusion

This project tackles the question answering (QA) or machine reading comprehension (RC) problem
on the SQuAD 2.0 dataset. Multiple models, including extending the baseline BiDAF model with
character-level embeddings, QANet with vanilla transformer architecture, and Transformer-XL are
implemented and evaluated for performance. Including character-embedding in the BIDAF model
increases its performance over baseline, but better results are seen from the QANet model. Our
current conclusion on the Transformer-XL model is that it does not have a significant increase over
the vanilla transformer model, and that the training time is more than twice as long as the QANet
model that doubles hidden layer length. Segment-level recurrence, the main architecture of the
Transformer-XL model, does not fit well with the QA task, because the input data is processed
differently in text generation and question answering tasks. The main limitation for this project is
that the Transformer-XL model was not trained fully to 30 epochs, and that the comparison between
QANet and Transformer-XL was indirect because of different hyperparameters. If time permits, both
the Transformer-XL and QANet can be better tuned to determine whether segment-level recurrence
could improve over vanilla transformer QANet.
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Figure 1: Sample convnet architecture. Image is taken from [4]].
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Context

Question

Answer

Prediction

... Typically each commit-
tee corresponds with one (or
more) of the departments (or
ministries) of the Scottish
Government. The current
Subject Committees in the
fourth Session are: Economy,
Energy and Tourism; Educa-
tion and Culture; Health and
Sport; Justice; Local Govern-
ment and Regeneration; Ru-
ral Affairs, Climate Change
and Environment; Welfare
Reform; and Infrastructure
and Capital Investment.

Economy, Energy and
Tourism is one of the what?

current Subject Committees

N/A

...The UK subsequently
adopted the main legislation
previously agreed under the
Agreement on Social Policy,
the 1994 Works Council
Directive, which required
workforce consultation in

Which directive mentioned
was created in 19947

Works Council Directive

Parental Leave Directive

businesses, and the 1996

Parental Leave Directive. ...

... Their combined work in- | When was the military- | the 1950s 1950s
formed the study of imperi- | political complex reflected

alism and it’s impact on Eu- | upon within the scope of

rope, as well as contributed | understanding imperialism?

to reflections on the rise of

the military-political com-

plex in the United States

from the 1950s. ...

Norman architecture typi- | What is the Norman architec- | Romanesque England and Italy

cally stands out as a new
stage in the architectural
history of the regions they
subdued. They spread a
unique Romanesque idiom
to England and Italy, and
the encastellation of these
regions with keeps in their
north French style fundamen-
tally altered the military land-
scape.. ..

ture idiom?

Table 4: Sample errors of SQuAD.
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