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Abstract

When building robust machine learning models, it is often desirable to train models
that are able to generalize to data that is not necessarily from the same distribution,
but still of a similar formff. Specifically in the field of Question Answering, we
want to be able to train a DistiiBERT model on some larger dataset, and then
still have it perform well on some more niche out-of-domain dataset. In this
paper, we apply a number of techniques that can help us solve this problem. We
utilize model-agnostic meta learning (MAML), a method useful for fine-tuning
models in a few-shot learning paradigm. Moreover, we apply data augmentation
(masking), as well as architectural shifts such as adding more transformer layers
and modifying the loss function. We apply these methods because they also provide
some interpretability when looking at their performance overall. With respect to
performance, the meta-learning methods tended to perform the most poor out of
the bunch when compared to the baseline; however, our model that was trained
with an auxiliary loss function performed very well, achieving a 72.06 in-domain
val F1 (1.92% improvement), 52.28 out-of-domain val F1 (4.8% improvement) and
test F1 of 62.23 which put us at 4th on the leaderboard (top 10%).
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2 Introduction

With the rise in availability of high quality language data, as well as the constant improvements
made in machine learning models, large scale question-answering problems have been pushed further
and further into the forefront of the natural language processing field. Now, extremely expressive
transformer-based models such as BERT [[1] are considered state of the art in these types of tasks.
However, we do notice that these models require large quantities of data in order to be effectively
trained in some question-answering task. Moreover, we notice that these models often struggle to
generalize to datasets of questions that are out-of-domain, which often have smaller quantities of -
and more niche - information. As such, we explore techniques in this paper that can be useful for the
adaptation of larger models (here, we specifically use DistilBERT [2], a smaller version of BERT) to
these smaller out-of-domain question answering tasks.

One field that has become increasingly popular in reinforcement learning and classification domains
in recent years is meta-learning, which is the process of "learning how to learn". More concretely, we
are able to learn more general purpose parameters such that we can encourage the model to learn how
to quickly tune itself to a new, unseen task. These methods can be particularly useful in few-shot
learning situations, as a model can quickly learn how to adapt itself when given only a few examples.
As such, it is particularly suited to be utilized for NLP tasks as well when we have these smaller
out-of-domain sets of data.
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Additionally, we try other methods for encouraging the model to perform well on the out-of-domain
sets. Particularly, we try forms of data augmentation, where we modify the out-of-domain datasets
with forms of masking, in an en effort to make more data (these datasets can oftentimes be quite
small), as well as create more challenging examples for the model to learn.

Moreover, we try methods that involve modifying the final layers and/or loss function of the model,
such that it leads to a more flexible model when faced with new information. For example, we replace
the final transformer with an architecture that allows it to choose weights that operate best at a given
time for that example (ie, there are multiple transformers in parallel that might work differently on
different domains). Moreover, we experiment with ideas that allow for a softer loss function, allowing
the model to differentiate between being close to the correct answer.

3 Related Work

The field of meta-learning has evolved greatly over the past couple of years; one of the pivotal paper
being that which introduced model-agnostic meta learning [3]]. While the algorithm is discussed in
detail in the following section, this paper introduces a framework where the any model can learn
general parameters that are suited to learn some specific, new task with only a few support examples.
While its results shown in the paper are quite good, it has a some key drawbacks — for example, it
is highly sensitive to the support examples given to the model, as well as the distribution of tasks
provided to the model. Another key limitation is that the implementation of MAML involves the
computation of second-order gradients, which is often too resource-taxing for practical use. One way
to alleviate this issue is introduced in [4], which empirically shows that in many cases only using
meta-learning on some smaller subset of the model (given we are fine-tuning) can work almost as well
as doing so on the whole model. This allows for significantly reduced computational cost. Moreover,
many first order approximations also exist, such as Reptile, introduced in [S]]. We leverage these paper
to fine-tune our model, which is an interesting approach as the applications of question-answering
and MAML is an under-explored field.

Moreover, we also explore soft-labeling ([6]). Since many BERT models rely on cross entropy loss,
it can often lead to high loss terms even if the model was close in predicting the start and end tokens
of the answer. Soft labeling is a popular technique for classification, especially when more than one
label would make a reasonable guess. Soft labeling is often not used in NLP tasks, so we felt that
by using these techniques for our purposes, we can build a model that is optimized for a good F1
score rather than Exact Match (EM). However, the clear drawback here is that the model can often be
encouraged to only have to make "good" predictions, since loss is reasonably low if it is close to the
correct answer. As such, it is important to find a balance with how lax to be when looking at the soft
labeling; this is something we explore in our paper.

4 Approach(es)

4.1 Meta-Learning

We started with an implementation of Model-Agnostic Meta Learning (MAML) [3]], which we have
implemented (and its associated data loaders, which were modified from the provided ones) ourselves.
We utilize this method to fine-tune the DistilBERT model on the out-of-domain datasets. The MAML
model is described in figure [T] (figure also from [3]]). It consists of an outer step and an inner step.
In the outer step we sample a batch of tasks, where a task is some question domain that we are
fine-tuning on. Each task is the comprised of K questions in the support set, and then ) questions in
the query set. Then, for each task, (described lines 4-6 in the algorithm), we adapt the parameters of
the model according to the performance on the support examples to get some new adapted parameters
6;. We then look at the performance of the adapted parameters on the query examples, and record
that loss. We then perform another gradient update step using the gradient of the loss on the query
examples, based on the original un-adapted parameters. Thus, we see that the final goal is such that
we learn some parameters 6 such that we are able to quickly adapt to some new task, given a small
amount of examples.

Note that our implementation uses an Adam optimizer to make the update described on line 8, not
the vanilla SGD that is implied. Moreover, during the actual MAML fine-tuning procedure, we only
meta-learn on parameters 6 that are those of the final linear layer. This approach is described in [4],



Algorithm 1 Model-Agnostic Meta-Learning
Require: p(7): distribution over tasks
Require: o, (3: step size hyperparameters

1: randomly initialize &

2: while not done do

3:  Sample batch of tasks T; ~ p(7)

4 for all 7; do

5: Evaluate VoL, (fp) with respect to K examples

6 Compute adapted parameters with gradient de-
scent: 6, = 0 — aVoLr,(fo)

7:  end for

8: Update § + 8 — SV, E‘E~p(7’) Lr.(for)

9: end while

Figure 1: MAML Algorithm

and is shown to be almost as performant as vanilla MAML, but with significantly less cost (as the
gradient computation is not as large). Also note that for parts of the MAML implementation, we
relied on the CS330 HW2 (which Bhavik took and completed this assignment for) implementation of
MAML.

4.2 Parallel MAML

We try an small ensemble-like technique when using MAML, where we meta-learn on some subset
of layers of the DistilBERT model. When it comes time to evaluate the performance of the model, we
use the original weights of the baseline model to get one set of predictions, as well as the meta-learned
parameters to get another set. We then look at the confidence scores of each of the two models, and
predict whichever one has a higher score.

4.2.1 Reptile

We note that the implementation of MAML requires the computation of second order gradients,
specifically when computing the update on line 8 of Figure[I]. As such, MAML requires an extremely
high computational cost, which is an issue that often renders second-order methods impractical. As
such, that same update step often finds itself replaced with first-order approximations. One popular
method is Reptile [S)], which replaces the update with
00+ (6—0)
T;,eB

, where € is some hyperparameter akin to a learning rate, and this specific update is batched over a
series of asks (although the update can also be done after each task individually).

4.3 Data Augmentation

Since we had very little out of domain data training data to work with, we tried to augment it using
masking.

4.3.1 Masking Context

The first thing we tried was masking the context in a paragraph. In this approach, we ensured that the
question and answer tokens weren’t being masked. We used a base DistilbertForMaskedLM from the
huggingface library in order to infer the masked tokens.

Al A2 A3 Ad

Figure 2: Masking the Context



4.3.2 Masking Answers

After considering the previous approach, we thought that masking the answer would be an even
better way to ensure that the model is robust. Typically, the actual content in the answer shouldn’t
affect the answer. Instead the model should ideally rely almost exclusively on the context. Here is a
simple example to illustrate.

Eg: Question: How much does a bar of soap cost?
Context 1: A bar of soap costs about the same as a candy bar.
Context 2: A bar of soap costs $5.

In both these situations, the answer remains in the same place relative to the context. With
this intuition, we sought to augment data by masking answers.
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Figure 3: Masking the Answer

4.4 Transformer Level Attention

There were 2 goals with this architecture. 1) Make each model specialize in the different types of
logic needed for question answering and 2) Provide some interpretability to the model. We do this by
attempting to make inputs choose between the different transformers, as shown in[4]
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Figure 4: Transformer Level Attention Model

The attention for each of the blocks is based on the value of the [CLS] token.

The goal was to use the score vectors corresponding to an input (in the case of ] 4D vectors) in order
to cluster the questions. L.e. if 2 vectors had similar scores, we would expect them to correspond to
inputs with some similarities.

4.5 Auxiliary Smooth Loss

One big thing we noticed is that the default loss function for DistilBertForQuestionAnswering is a
cross-entropy loss who’s goal is to maximize EM, and which maximizes F1 more implicitly than
explicitly. Since our goal is to improve the F1 score, which tends to be a more robust capture of the
usefulness of a model, we tried to add in an auxiliary loss term that penalized the model less if it is in



the right area of the answer, and more if it is completely off. This came in the form of a smooth loss
coefficient surrounding the correct index of a start/end position. The details are shown below.

Suppose i is the location of the ground truth position (for start or end)

max_query_len

loss = —log(y[i]) — Z f(n)-log(1—y[n])

n=1

where )
x—1

f()=2-]o(——) - 05|

The hyperparameter -y is the smoothing factor and y contains the model probability predictions for
each location.

The first term in the loss is the regular cross-entropy loss. The second term penalizes the model
less for predicting locations that are close to the ground truth. One improvement that can be made
on this loss is to make ~y based on the specific input’s answer length so the penalty can be assessed
accordingly. IL.e. if an answer is longer, make the function smoother and more lenient for longer
lengths from the ground truth.
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Figure 5: Loss Factors for + = 100, v = 3

Some more intuition to this approach is that with a loss that isn’t as stringent on answers that are
less wrong, the model might be able to generalize better to datasets it has never seen before. We are
incentivizing the model to get close to the correct answer and don’t penalize it as much when it is not
the exact right answer, which might make its embeddings more robust to domain shifts.

5 Experiments

5.1 Data

We use the datasets provided for the RobustQA track: SQuAD , NewsQA and Natural Questions for
training the initial baseline DistilBERT model. We then use the out-of-domain datasets: RACE [[7]],
DuoRCJ[8]], and RelationExtraction [9] to finetune the model using the various methods previously
described.

5.2 [Evaluation method

The evaluation of each method is done by computing the Exact Match (EM) and F1 scores on both
the out-of-domain validation and out-of-domain test sets.



5.3 Experimental details
5.4 Meta-Learning Models

For MAML models were both implemented with an outer learning rate of 3e — 5, and an inner
learning rate of 0.3. We gave 10 support examples and 5 query examples for each task iteration, and
we had three tasks for meta-training, where each task corresponded to one of the in-domain datasets.
Finally, we fine-tuned the meta-learned parameters on the out of domain data before evaluating our
model.

5.4.1 Transformer Level Attention

We froze the first 4 transformer blocks and the word embeddings for training the transformer level
attention model to speed up training time.

5.4.2 Auxiliary Smooth Loss

We didn’t have as much time to test this method, so we were able to only test it with v = 4 for the
smooth factor.

5.5 Results

Following are our results for the out-of-domain validation and test.

Model Type Fl1 EM
Baseline 49.881 | 34.56
Vanilla-MAML 45.021 | 28.092
ParallelMeta 47.858 | 31.675
Baseline + OOD Finetune 51.24 35.86
Baseline + Answer_Masking 50.71 35.60
Transformer Level Attention 49.56 34.29
Transformer Level Attention + OOD Finetune 50.01 35.34
Transformer Level Attention + Context_Masking(0.15) | 49.22 34.29
Transformer Level Attention + Context_Masking(0.25) | 49.00 33.77
Transformer Level Attention + Answer_Masking 51.32 35.34
Auxiliary Smooth Loss 52.28 | 35.08

Table 1: Model Results (Dev Set)

Model Type F1 EM
Auxiliary Smooth Loss 62.225 | 43.028
Baseline + Answer_Masking 57.846 | 40.940

Transformer Level Attention + Answer_Masking | 57.790 | 39.885
Table 2: Model Results (Test Set)

Note that the results of Reptile are not reported as they performed quite worse than the vanilla second
order MAML, as we did not have time to sufficiently test its hyperparameters.

As mentioned in section 4.2, we expected these results because we thought the auxiliary smooth loss
would do a better job generalizing to unseen datasets. The test set, which is far more vast than the
validation set agreed with this analysis.

6 Analysis

6.1 Meta-Learning

We see that for the MAML models, performance especially lacks when compared to the baseline.
In general, we believe that the task distribution of the out-of-domain question answering problem



is not as clear-cut as more canonical meta-learning problems (ex. Omniglot). As such, it is hard to
fine-tune the model in such a way that it is prepared for the few-shot scenario of the out-of-domain
questions. We do however see a performance gain on the Parallel MAML model when compared to
the normal MAML model. This might be the case just because the parallel model has the option of
defaulting to the baseline when it is not confident in the meta-learned predictions.

6.2 Transformer Level Attention

Although the hope was to obtain vectors corresponding to different inputs that could be used for input
clustering, our results didn’t align with our expectations. There was little variation between inputs
and even when there was, we couldn’t see any clear clusters forming, as shown in the PCA plot.

PCA for 4D Score Vectors

0.04 -

0.03 A

0.02 A

0.01

0.00

—0.01 A

—0.02 A

—0.03 A

—-0.04 -0.02 0.00 0.02 0.04 0.06

Figure 6: PCA for 4 Transformer Score Vectors after 2 epochs

6.3 Auxiliary Smooth Loss

This method yielded some very significant results compared to the other methods. We can see in
[7]that the smooth loss model remains higher in F1 and lower in EM on the in-domain val dataset
throughout the run duration. This makes sense for the in-domain dataset. Since there is a large
abundance of data, the model trained on just the EM objective is able to outperform the smooth loss
model in EM. However, this is no longer the case for the out-on-domain data. As discussed earlier,
this may be because a model trained just on the EM objective isn’t able to generalize as well to
datasets it has never seen before due to the stringent loss, not rewarding the model for getting close.

6.4 Performance on Different Datasets

Model Type F1 EM
Auxiliary Smooth Loss 62.225 | 43.028
Baseline + Answer_Masking 57.846 | 40.940

Transformer Level Attention + Answer_Masking | 57.790 | 39.885
Table 3: Model Results (Test Set)

7 Conclusion

Overall, we conclude that MAML doesn’t seem like a very principled way to approach the problem
due to the task distributions not being quite clear, although perhaps other meta-learning paradigms
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Figure 7: Results vs Baseline Model

might be useful, and might be interesting to explore in the future. Also, while our clustering method
seems principled in approach, there leaves something to be desired in terms of its final interpretability
and results (they were not as robust as we would have liked). However, our auxiliary loss performs
the best by far and does quite well on the dev and test sets, suggesting that this type of penalty (being
less harsh if we are close) is useful for the question answering problem. Due to the long training time
of some of our models, we were unable to explore a larger amount of tuning. We would have also
liked to do a little experimenting with slight modifications to our architectures.

For future work, we would like to combine a lot of our methods, since a lot of our approaches were
general techniques. For example, data augumentation would have been nice to create more masks for
use with MAML, and the sigmoid loss function could be applied to nearly any other approach as a
supplement.
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