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Abstract

Transformer-based models are incredibly powerful, but are also incredibly expen-
sive to train and utilize for inference at scale. In this project, we apply memory-
and compute-reduction techniques (such using LSH attention with chunking and
RevTransformer blocks) to a popular transformer-based NLP QA model (QANet) to
explore whether more efficient models can achieve similar performance to the more
expensive ones highlighted in most modern research papers. We have implemented
the base QANet model from scratch, and will discuss the impact of replacing core
subnetworks within the model with more resource-efficient implementations using
the techniques described in the Reformer paper.

1 Introduction

In the field of NLP, recent work has shifted focus from recurrent architectures (like vanilla RNNs,
LSTMs, and GRUs) [1] to self-attention-based “transformer” models, in part because self-attention en-
coder computations can be effectively parallelized on modern hardware while recurrent computations
cannot be [2].

Transformer-based models have achieved state of the art performance on a number of tasks, but they
also come with high memory and computational requirements (consider the quadratic complexity
required to compute the matrix-matrix product involved in self-attention) [3] [4] [5], [6]. Question-
answering is one such NLP task in which transformer-based models have been prominent in recent
work. QANet, which makes use of a modified transformer encoder to produce embeddings, is a
particularly powerful model for addressing this problem [7]. It is the subject of study of this project.

A number of papers have proposed modifications to the transformer’s core architecture to cut the
computational complexity of self-attention to linear or log-linear time and/or space complexity [8].
We experiment with one such architecture adjustment, the Reformer [9], in this project. Specifically,
we apply modifications proposed in the Reformer paper to the transformer-based component of
QANet to improve memory and computational complexity. Our contributions are summarized as
follows:

• We implement QANet from scratch and achieve good performance on SQuAD 2.0.
• We find that LSH significantly lowers QANet performance on SQuAD 2.0.
• We find that applying LSH and applying LSH and RevTransformer to QANet decreases

memory usage, but can increase training time.
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2 Related Work

Because of the ubiquity of transformer-based architectures in machine learning research in recent
years, significant research has been made into the development of efficiency-boosting architecture
modifications [8]. Broadly speaking, some such methods attempt to use static or learned sparsity
patterns in the matrix product QK⊤ (whose rows represent unnormalized attention scores). Examples
of such approaches include the Sinkhorn Transformer, Routing Transformer, Sparse Transformer, and
Reformer [10] [11] [12][9].

Prior work has investigated performance gains made by making architecture modifications to the
transformer across tasks and applications and found that most modifications did not improve trans-
former performance across a wide variety of tasks [13]. To our knowledge, we are the first to
examine Reformer performance on the question answering task and, in that sense, we are exploring
the generalizability of reformer to the question answering task. Moreover, the performance losses
resulting from using LSH (as discussed below) suggest that a study similar to Narang et al [13], in
which efficiency improvements for transformer are evaluated robustly across tasks, may be necessary.

3 Approach

First, we evaluate the baseline BiDAF model on SQuAD. For details on the BiDAF architecture,
see [14]. Then, we implement an existing QA model – QANet [7] – and apply the modifications
suggested in the Reformer architecture to it [9].

Our first task was implementing a version of QANet from scratch, with minimal references to
existing code. This non-trivial task required the creation of four major model components: an input
embedding layer, QANet encoder blocks, a context-query attention layer, and the output layer. The
overall model architecture can be seen in Figure 2.

Our second task was augmenting this base model with memory-saving improvements suggested by
the Reformer paper, namely LSH self-attention and RevTransformer residual blocks. We integrated
with an open-source library to provide this functionality. We then compared the efficiency and
performance of the resulting modified model against the baseline we implemented in the previous
task.

3.1 Model Components

Input Embedding Layer: The input embedding layer takes in word and character embeddings for a
snippet of text and produces a single embedding to be used by the encoder embedding blocks. We
use a two dimensional convolution on the character embeddings only with dmodel output channels
and a kernel size of (1, 5), and run it over our input of shape (batch size, character embedding
size, sequence length, word length) and then max pool over the word length dimension. We use a
kernel height of 5 (provided by the QANet authors) and a width of 1 to preserve the sequence length
dimension. Later, we concatenate the convolved character embedding and the word embeddings and
convolve that again using a one dimensional convolution with dmodel output channels and run the
result through a two-layer highway encoder network.

QANet Encoder Block: QANet proposes the Encoder block, which is essentially a transformer
encoder block with minor modifications. Namely, the encoder block repeatedly applies convolutions
(and layer norms) to the input before applying the usual multihead self-attention and feed-forward
neural network (along with residual connections and layer normalization between each layer). The
intuition behind this architectural choice is that the convolutions will capture local text dependencies
between words close together in the text, while self-attention focuses on global dependencies between
word-pairs.

In exact terms, the Encoder block is constructed as follows: [1D Convolution × # + self-attention
layer + feed-forward layer] and is shown in Figure 1.

Each of these operations (convolution/self-attention/feed-forward) is placed inside a residual block
as shown in Figure 1. In mathematical terms, for an input x and an operation f , the output of a
residual block containing that operation is f(layernorm(x)) + x where layernorm indicates layer-
normalization [15].
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Figure 1: QANet encoder block architecture [7]. The input is convolved repeatedly before being
fed through self-attention and a feed-forward output layer. There are residual connections and layer
normalization layers between each step.

We use depthwise separable convolutions, as the authors of the Reformer paper observed that
depthwise separable convolution was more memory efficient and generalized better [9][16]. Each
encoder block contains 4 convolutional residual blocks.

The self-attention layer in each encoder block has 8 attention heads. In general, we can stack encoder
blocks together, and each stacked embedding encoder block consists of 2 individual encoder blocks.
Each block in the stack shares parameters with the other(s).

QANet Encoder Block Modifications: This section describes our novel contributions to the QANet
architecture. We use three types of encoder blocks in our experiments: the vanilla encoder block
described above, the LSH encoder block, and the LSH+RevTransformer encoder block.

The LSH encoder block uses LSH self-attention rather than standard, dot product self-attention.
Intuitively, LSH self-attention leverages sparsity in the QK⊤ matrix to avoid unnecessary computa-
tion, since if (QK⊤)ij is small, it implies that attention score αij will be negligible after softmax is
applied.1 To begin, they use a locality-sensitive hashing (LSH) function, which takes vectors and
maps them to buckets such that all vectors in a given bucket are nearby in the embedding space.
Then, the idea is that the dot product between queries in different buckets will be small enough that
their attention scores would be negligible. Queries in Q are then grouped by their hash value, and
self-attend only to queries within the same bucket. Softmax is applied to the reduced self-attention
scores, and the results are recombined into an output matrix.

The Reformer also suggests Reversible Transformer modifications. In particular, embeddings x of
shape (B,L,D) input to the Reformer are split along the last dimension into two embeddings, x1

and x2, both of shape (B,L,D/2). Then, the layer output [y1, y2] is computed as:

y1 = x1 + LSHAttention(x2) y2 = x2 + FeedForward(y1) (1)

1The Reformer authors note that one can set Q = K without losing performance. Our Reformer implemen-
tation does this as well.
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We can then compute the activations for previous layers from subsequent layers since x2 = y2 −
FeedForward(y1) and x1 = y1 − LSHAttention(x2), where y1 and y2 can be obtained from the
current layer’s outputs of shape (B,L,D) by taking y1 of shape (B,L,D/2) to be the first D/2
embedding dimensions and y2 to be the rest. We did not implement LSH and the RevTransformer
modules from scratch, and instead adapted an open source implementation [17] to work with our
QANet implementation.

Context-query attention layer: First, we compute the similarities between each pair of context
and query tokens to create a similarity matrix S ∈ Rn×m (where n is the number of tokens in the
context and m is the number of tokens in the query). Then, we normalize each row of S by applying
the softmax function, getting a matrix S̃. Afterwards, we compute context-to-query attention as
A = S̃ ·Q ∈ Rn×d where Q is the encoded query (and is of shape m× d, where d is the encoding
dimension). The similarity function used is the trilinear function: f(q, c) = W0[q, c, q⊙ c] where W0

is a trainable variable, Q is the encoded query, and C is the encoded context. For context-to-query
attention, we compute the column normalized matrix S̄ of S by softmax function, and use this to
compute query-to-context attention: B = S̃ · S̄⊤ · C.

Output Layer: This final layer is relatively simple, as it re-uses the stacked encoder block
module described above. The inputs to this layer are M0 = StackedModelEncoder(x), M1 =
StackedModelEncoder(M0), and M2 = StackedModelEncoder(M1), where x is the output from
the context-to-query attention layer. The set of stacked encoder blocks used here have 7 con-
stituent encoder blocks and share weights (as before). The output layer then computes the logits
for the start of the answer as FeedForward([M0;M1]) and the logits for end of the answer as
FeedForward([M0;M2]). We finally apply a softmax to obtain the log probabilities.

We used basic PyTorch building blocks (nn.Linear, nn.LayerNorm, nn.Softmax, etc.) to imple-
ment each of these components based on the description provided in the QANet paper [7]. We made
use of provided code for loading the SQuAD dataset, obtaining input pretrained embeddings, and
training the model. Since the conceptual architecture of the model is similar to BiDAF [14], we
also made use of the provided BiDAF implementation to do “hotswap testing” (plugging in our own
model components in lieu of existing components in the BiDAF model to ensure performance parity).

4 Experiments

4.1 Data

Our dataset was the publicly available SQuAD 2.0 [18] dataset, which contains 129,941 training
examples, 6,078 dev examples, and 5,915 test examples used for question answering tasks. The
examples come in the form of context paragraph-question pairs; for example, the model will be given
a paragraph (the “context”) from Wikipedia and a question regarding that paragraph. The model is
expected to answer the question by selecting a subspan of tokens in the context paragraph (i.e. the
correct answer is a substring within the context paragraph and it is the model’s job to identify it).

4.2 Evaluation method

For evaluating performance, we use F1 and EM scores averaged over the entire evaluation dataset to
compare models. To compare memory usage, we consider the amount of GPU memory allocated
during model training. This is measured using Weights and Biases [19]. We also consider model
runtime during training.

4.3 Experimental details

First, we discuss our hyperparameter settings. We use most of the hyperparameters specified by the
QANet paper, including the number of convolutions per encoder block (4 and 2 for the embedding
encoder and model encoder, respectively), the dropout probability (0.1), and dmodel (128). However,
we make some adjustments. We use only 5 model encoder blocks in the stacked model encoder rather
than the recommended 7 due to GPU RAM constraints.

Moreover, we elect to use Adadelta rather than the Adam optimizer used by QANet, and we use
our own starting learning rate (though, as Adadelta is an adaptive algorithm, this choice is not very
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Figure 2: QANet model architecture [7]. Each input (context and query) are embedded, encoded, and
then mixed via an attention layer. The resulting representation is then encoded several more times,
before final neural networks are applied to predict the start and end positions of the answer.

impactful). We do this because the QANet authors had access to more data on which to cross-
validate their model and select an optimal Adam learning rate. Since Adadelta does not require
cross-validation of the learning rate and since we had limited computing resources, we elected to
use this more forgiving option. We use the same hyperparameters for vanilla QANet, LSH QANet
(QANet modified both with LSH self-attention), and Reformer QANet (QANet modified both with
LSH self-attention and reversible transformer blocks).

We fully trained and tested the vanilla QANet and LSH QANet on the SQuAD 2.0 dataset and
submitted to the dev and test leaderboards to evaluate performance. Due to computational constraints,
we were unable to complete a full training run for our Reformer model (approximately 10 hours of
training, which exceeded the computational budget granted to us by the course after evaluating our
other models), but ablation studies suggest its performance is on par with the LSH model.

For all three architecture variants, we evaluate memory and time usage per mini-batch. Because
memory and time usage is relatively consistent between mini-batches, we monitor GPU usage and
time usage for one mini-batch only.

4.4 Results

Performance results can be seen in Table 1. QANet outperforms the BiDAF baseline, as expected.

However, we see a sizable performance drop when we use LSH instead of standard dot product self-
attention. This was not expected; transformers with Reformer modifications should maintain similar
performance according to results from the Reformer paper. There are several possible explanations
for this. First, we did not have a sufficient computational budget to properly tune hyperparameters
associated with LSH (we used hyperparameters similar to those used by the original Reformer paper).
However, different hyperparamters may be more suited to the SQuAD dataset, and usage of those
hyperparameters may significantly boost performance. The second possible explanation is that the
performance results reported in the Reformer paper do not generalize across tasks; perhaps the
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Reformer modifications cause significant performance reduction when used in the QA setting. This
could be suggestive to a phenomenon similar to that found in Narang et al [13] wherein transformer
modifications for efficiency can maintain performance in a narrow set of tasks but do not generalize
well to others.

Model EM Score F1 Score
Baseline - BiDaF 57.5 61.0

LSH 57.9 61.7
QANet 62.0 65.0

Table 1: EM and F1 scores of BiDaF, LSH, and QANet on the test set.

Figure 3: EM and F1 scores of QANet, LSH, and BiDaF on the dev set. While QANet outperforms
BiDaF as expected, we find that LSH leads to a significant decrease in performance.

Figure 4: Memory and time consumption of vanilla QANet, QANet modified with LSH self-attention,
and QANet modified with both LSH self-attention and reversible transformer modifications (RevTrans-
former).

In Figure 4, we can see that our modifications were successful in moderately reducing memory
consumption, but at a cost to runtime (especially when introducing the RevTransformer blocks).

5 Analysis

5.1 Error Analysis

We begin by understanding QANet’s shortcomings with respect to our F1 and EM performance
metrics. A qualitative analysis of our model’s performance on the SQuAD 2.0 dev set is summarized
in Table 2.

The results are curious. Around 70% of the mistakes made by the both the vanilla and LSH QANet
models on the dev set are what we will call “false positives” or “false negatives” (in a roughly
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Error category Vanilla QANet LSH QANet
Total incorrect 2271 2520
False positive 951 (≈42%) 1254 (≈50%)
False negative 686 (≈30%) 555 (≈22%)

Bad guess (incl. sub/superstring) 634 (≈28%) 711 (≈28%)
Substring or superstring 390 (≈17%) 431 (≈17%)

Table 2: Qualitative analysis of Vanilla QANet and LSH QANet errors on the SQuAD 2.0 dev set.
The percentages are the approximate percentage of the total error that falls into that category.

even split). In simpler words, when the answer to a particular question is not present in the context
paragraph, our model makes a prediction or vice versa (our model will make no prediction despite
there being a golden, labeled answer for the question-context pair).

Of the remaining mistakes (what we call “bad guesses”), both models actually comes close over 60%
of the time. That is, in many “bad guesses”, the model predicts some substring or some superstring2

of the golden label. Inspecting instances of these mistakes, both models often add on or removes
articles, adjectives, or punctuation marks from the start and/or end of its prediction relative to the
golden label3. Some mistakes would be outright acceptable output labels, e.g. The Russian leader
Lenin instead of Lenin. If this behavior were observed in a production system, it would perhaps
appear “buggy” to the user, but it likely wouldn’t strike them as “incorrect”. Note that such mistakes
would impact the model’s EM score but not its F1 score (quite as much).

This leaves a third and final class of errors (about 30% of the total for both vanilla and LSH QANet)
in which the model makes erroneous predictions outright. In some cases, these predictions are at least
reasonable (predicting a proper noun where a proper noun is expected, like Huguenots instead of New
France), but some are just plain wrong (e.g. not completely replace them instead of it significantly
altered the existing treaties), though these cases are somewhat rare upon inspection. Another frequent
subcategory of error within this umbrella are numerical mistakes, whereby the model predicts an
incorrect date or other number. This is interesting as it indicates that the model is sophisticated
enough to know a numerical answer is expected, but it lacks the full question understanding necessary
to pick the correct one.

5.2 Resource Efficiency Analysis

We were pleased to find that reformer-style modifications to QANet improved on memory usage. We
were slightly surprised at the scaling we observed, however. Via an ablation study of memory use
during a single minibatch (see Figure 4), we saw that memory use didn’t seem to scale differently
when Reformer modifications were applied to the model.

Unfortunately, our LSH+RevTransformer model performed significantly worse in terms of runtime, as
seen in Figure 4. Given that the LSH QANet runs only slightly slower than the vanilla QANet, it seems
that adding RevTransformer modifications caused the extreme slowdown. The Reversible Transformer
modification is supposed to slow runtime somewhat, since backpropagation with RevTransformers
requires additional computation to be executed in order to obtain activations (rather than using
“cached” activations that are simply stored in memory). However, the level of slowdown we observed
is still surprising.

6 Conclusion

In this project, we learned that transformer models are powerful tools (relative to traditional, sequence-
based models) for question-answering, and can be made to be more resource-friendly via several clever
implementational tricks that approximate or obviate the need for the most expensive computations
and memory storage.

2This is, unfortunately, not the first use of the term “superstring” in a non-theoretical physics paper. See e.g.
Gorbenko and Popov 2012.

3For example, “Denmark, Iceland and Norway” instead of Denmark, Iceland and Norway, or like-minded
Shia terrorist groups instead of Shia terrorist groups.
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Our primary achievement was implementing the QANet transformer architecture from scratch. We
subsequently augmented that implementation with Reformer-style component modules to reduce
memory use and time complexity of the self-attention computation.

Our most important finding is that applying LSH rather than standard dot-product self-attention in
QANet causes a massive performance drop. This suggests that further study of the generalizability
of Reformer modifications (and perhaps other transformer efficiency modifications) may need to be
studied further and more rigorously. Future work may, for instance, apply Reformer-style modification
to popular, expensive language models (like GPT-X , BERT, etc.) to make them more accessible
and perform a more general study to make sure that these modifications do work for a variety of
tasks. Given that these models are often inaccessible to the general populace given their size, the
implications of an efficiency-improving transformer modification which preserves performance are
immense. Therefore, we believe this to be important work.
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