
SQuAD2.0 with Conditional End Prediction and
Character Embeddings

Stanford CS224N Default Project

Alaskar Alizada
Department of Computer Science

Stanford University
ala5kar@stanford.edu

Daniel Valner
Department of Computer Science

Stanford University
dvalner@stanford.edu

David Malinak
Department of Computer Science

Stanford University
dmalinak@stanford.edu

Abstract

In this project, we developed a series of models for the question-answering task
on the Stanford Question Answering 2.0 (SQuAD2.0) dataset. We worked with
all aspects of a successful deep learning model in mind, from a proper encoding
skeleton, to experimenting with different predictive layers, to augmenting data.
Specifically, we focused on improving the baseline BiDAF model through character
embeddings and a conditional pointer layer. Our results were mixed: while the
dependent relationship of a start- and end-tokens showed to be of little importance;
character embeddings revealed the importance of rich sub-word relationships; and
a foray into data augmentation revealed some potential pitfalls in that area.

1 Key Information to include
• Mentor: Kaili Huang
• External Collaborators (if you have any): None
• Sharing project: No

2 Introduction

A robust question answering system is an important and ubiquitous application of NLP in today’s
world, from search engines to chat bots. These QA systems use existing text to answer questions
posed in natural language. To do so, they select a contiguous fragment of the given text. Systems
like these are a great way to test the capacity of machine learning models to "comprehend" a piece
of text. In this context, "comprehension" applies to both understanding the question being asked
as well as understanding how the context passage relates to the question. Furthermore, the system
needs to encode the structure of the passage and identify how facts relate to each other, which clauses
depend on each other, and which words contain the most important information. Hence, identifying
the proper fragment of the context is a complex problem.

The Stanford Question Answering Dataset version 2 (SQuAD2.0) has been a seminal dataset in
the question-answering problem. Using online sources like Wikipedia, the architects of the dataset
constructed contexts with rich semantic structure that require a significant level of "understanding" to
answer. See the following example:

Question: When were the French wars of religion?
Context: The French Wars of Religion in the 16th century and French Revolution in the 18th

Stanford CS224N Natural Language Processing with Deep Learning

successively destroyed much of what existed in the way of the architectural and artistic remnant of
this Norman creativity.
Answer: 16th century.

This is the structure for every example in SQuAD (a 3-tuple with question, context, and answer). To
find the right words from the passage to include in the answer, we need to capture word meanings
and functions which generate relationships within the text. (The word ’in’ could be key here, for
example.) Many attempts have been made to capture this complexity, including the BiDAF model,
provided for the baseline, and the Match-LSTM with Bi-directional Ans-Ptr model, both described
below.

We approached this problem differently in that we modified three different components of the existing
baseline model. Chronologically, we started at the output layer and worked backwards. First, we
replaced the output layer with a layer inspired heavily by Pointer Net (described in the Match-LSTM
paper) and multiplicative attention. Seeing that results were weak, we moved back to the embedding
layer to capture subword relationships with character embeddings. Encouraged by strong results but
concerned about overfitting, we briefly experimented with a custom form of data augmentation which
was inspired by the ’EDA’ (Easy Data Augmentation) paper, described below. Unfortunately, we did
not reach a highly effective implementation of data augmentation for reasons we will discuss in the
analysis.

3 Related Work

3.1 BiDAF

The given baseline for our model and one of the first models used for SQUAD is Bi-Directional
Attention Flow or BiDAF [1]. It uses the concept of having attention flow both from the question
to the context and from the context to the question, thus the "bi-directional" attention. This allows
the model to have some question-encoded information linked to the context. BiDAF then feeds this
information to into an LSTM to predict the context spans. This has been shown to have 65/68 EM/F1
scores, which are standard evaluation metrics for SQuAD2.0 and QA models in general.

3.2 Match-LSTM with Bi-directonal Ans-Ptr

Another model that has seen improvement on EM/F1 evaluation metrics on the SQuAD dataset is the
Match-LSTM model with Bi-directional Ans-Ptr [3], which combines methods from Match-LSTM
and PointerNet [2] to create a question answering model. Match-LSTM was originally designed for
predicting textual entailment (i.e. plausibility of coincidence) between a premise and a hypothesis
but those methods were tranfered over to QA. At each position of the context, attention mechanism is
used to obtain a weighted vector representation of the question. This weighted question is then to be
combined with a vector representation of the current token of the context and fed into an LSTM. The
match-LSTM essentially sequentially aggregates the matching of the attention-weighted question to
each token of the context and uses the aggregated matching result to make a final prediction.

Described in the same paper, Ptr-Net introduces the method of using the attention mechanism as a
pointer to select a position from the context as an output symbol, instead of simply picking an output
token from a fixed vocabulary. This strategy happens to fit well with the SQuAD QA task; in their
Ptr-net inspired efforts, Wang and Jiang add an Ans-Ptr layer to the Match-LSTM which conditions
the distribution of the answer’s end token on the answer’s start token. This is done by feeding the
attention output, produced when generating the start token distribution, into an RNN, which then
produces the attention distribution on the end token. By mixing these two methods, Wang and Jian’s
model was able to produce predictions with 67.6/77 EM/F1 ratio. Note that these scores are on the
SQuAD dataset and not SQuAD2.0, which includes unanswerable questions. These scores are similar
(very marginally worse) to the BiDAF scores on SQuAD but had not been tested out on SQuAD2.0
prior to our explorations.

3.3 EDA

Other strategies that have helped improve performance on many NLP tasks have involved data aug-
mentation to reduce overfitting. Outlined in EDA [4], methods like replacing words with synonyms,

2

randomly inserting words, randomly swapping words within a sequence, and randomly deleting
words were proven to show improved performance in 5 NLP tasks, especially when using a small
dataset. This is a result of preventing the model from fitting too closely to near-meaningless words
like ’is’ in a piece of text.

4 Approach

4.1 Baseline

We start by implementing the BiDAF model without character embedding as outlined in the hand-
out/starter code. This includes an embedding layer, encoding layer, attention layer, modeling layer,
and output layer.

4.2 Character Embeddings

The baseline approach to the SQuAD QA problem uses pre-trained, GLoVE-style word embeddings
to train and test the model. More specifically, the baseline approach passes pre-trained word vectors
through an embedding layer, consisting of dropout and a linear layer, to adjust the sizes of the
embeddings to that of the model’s hidden layer size. As we learned towards the beginning of the
quarter, GLoVE-style word embeddings are able to capture inter-word relationships, but they miss
semantic relationships that exist between characters from the same and different words. For instance,
verb tense (’-ed’) may be relevant to the meaning of the context and the position of the answer. Hence,
we altered the embedding layer to process character embeddings for concatenation into final word
embeddings.

Similarly to word embeddings, we use each character to look up a pre-trained character vector, and
we use dropout to prevent overfitting (probability 0.2). Our first variation from the word embeddings
process is a 2D convolution to relate characters within words and from different words. We follow
the convolution with a max pooling step to reduce the resultant matrix to the proper dimensions for
concatenation. Finally, we concatenate our word embeddings and character embeddings to create our
final word embeddings of dimension, packaged in a matrix of size (batch_len, seq_len, hidden_size *
2).

4.3 Conditional Pointer Layer

Another approach we introduced to our model came from rethinking the loss that was used in the
BiDAF approach. Specifically, the negative log likelihood loss they were trying to minimize in the
baseline model was lossNLL = − log pstart(i)− log pend(j) . In other words, they were trying to
maximize the likelihood of P (a|θ) = P (astart = i, aend = j|θ) = P (astart = i|θ)P (aend = j|θ),
where a is the answer and astart and aend variables indicate the start and end positions of the
answer in the context. The assumptions made in the two equations are that answers to questions are
contiguous in the context (such that answers exist including and between two boundary words), and
that the astart and aend variables are independent of each other. Our approach focused on challenging
the second assumption by building a more expressive model, where we would instead maximize the
likelihood of P (a|θ) = P (astart = i, aend = j|θ) = P (astart = i|θ)P (aend = j|astart = iθ).

The implementation of our idea was inspired by the work done by Wang and Jiang through their
implementation of Match-LSTM in machine comprehension [3]. We were impressed by the
improvements the model had on its predecessors and its conditional layer seemed like an intuitive
addition to BiDAF. (Intuitively, the selection of the end token should depend to some degree on
the selection of the start token.) As explained in section 3.2, the goal of Match-LSTM in a textual
entailment is to combine some representation of the premise with every token of the hypothesis and
to run that representation through an LSTM to encode sequential information. In this setting, we use
the output from the Model layer of the BiDAF M , which is a matrix that encodes representation
of the context conditioned on the question with integrated temporal information. From here, we
generate the probability distribution of the start token. Then, we use the start token distribution and
the Match-LSTM technique to generate the probability distribution of the end token.
Specifically, we will run the output of the Model layer (matrix M) through the following functions:

Fk = tanh(VM + (Whk−1 + b))

3

βk = (vTFk + c)

where hk = LSTM(MβT
k , hk−1) (one-layer, unidirectional LSTM) and k ∈ {0, 1}.

Thus, β0 becomes the probability distribution of the start token, and β1 becomes the probability
distribution of the end token conditioned on the start.

To achieve this, we first create the Start Token Layer (layers.StartTokenLayer) that calculates k = 0,
with h−1 being 0. Then, the output β0 from the Start Token layer is fed into the Output layer
(layers.Output) where the same process is repeated, with the exception that we include a non zero
h0 vector that encodes information from both matrix M and the probability distribution of the start
token. We also integrate their temporal information via the LSTM. The output of the Output layer is
thus βs and βe (s is substituted for 0 and e is substituted for 1 for clarity of notation), which are used
to calculate the altered negative loss likelihood through lossANLL = − log βs[i]− log βe[j].

4.4 Data Augmentation

Seeing that we had not yet attempted to reduce overfitting, we considered data augmentation. Inspired
by Wei and Zou’s efforts from their 2019 EDA paper [4], we sought out the point in our architecture
at which we could alter the context and the question. Our search brought us to the piece of the train.py
file which surfaces the context/question word/character indices, just before passing the sequences to
the model.

Here, we use an approach which we call Shuffling that varies slightly from Wei/Zou’s Random
Swapping (RS) technique, which involves swapping words in pairs until some fraction of the words
or characters in the sequence has been altered (call this fraction α). Instead, we simply take a random
sample of size α∗ len(sequence) columns from each batch (where rows are input sequences), shuffle
them, and replace them into the batch matrix. This mostly has the same effect as RS, with the pitfalls
that a) words/characters have a chance of residing in the same position, and b) some words switch
positions with padding.

5 Experiments

5.1 Data

The dataset we will be using is the Stanford Question Answering Dataset (SQuAD 2.0). SQuAD 2.0
is made up of paragraphs from Wikipedia with questions and answers crowdsourced using Amazon
Mechanical Turk. The dataset contains roughly 150k questions and split into three parts: train, test
and dev sets. For roughly half of these questions there exists an answer somewhere in the provided
context paragraph. The rest of the questions are unanswerable using the provided context. Our model
has been designed to take in a context and an associated question, and return an answer from the
context, if it exists.

5.2 Evaluation method

Our model performance was evaluated using two important metrics: Exact Match (EM) score
and F1 score. EM score is a metric that assesses whether our model output answer is an exact
match of the ground truth answer. The dev and test sets both contain three answers per answerable
question, which should add flexibility to this metric’s criteria. Nevertheless, this is a very strict
measurement of our model performance, so we will also be using the F1 score. The F1 score is a
harmonic mean of precision and recall, mathematically defined as F1 = 2 ∗ precision∗recall

precision+recall , where
precision = TP

TP+FP and recall = TP
TP+FN (TP: True Positive; FP: False Positive; FN: False

Negative).

5.3 Experimental details

The first model we ran as our baseline was the standard BiDAF model. We ran full experiments on
four different models and kept all of the hyperparameters constant. That is, for all four experiments
we ran the models for 30 epochs with a batch size of 64, a learning rate of 0.5, and an Adadelta
optimizer. We had some partial experiments where we toyed with some parameters the learning rates

4

(0.4, .7) and decreasing epochs (20-25) and got worse in both F1/EM results across the board on the
baseline model. As a result, we decided to stick with the default hyperparameters for the following
models.

Second, we altered baseline and ran the true BiDAF model in which we added character embeddings
(as described in 4.2), with the same hyperparameters.

Third, we altered the baseline BiDAF model to add more expressiveness by rephrasing the loss
function as a joint distribution of start and end tokens without making independence assumptions
(described in 4.3). We made several attempts at trying to obtain this joint relationship. The first
attempt, inspired by the multiplicative attention technique, involved trying to learn a relationship
between all possible start-end token pairs of embeddings through uTWv where W was the learnable
matrix of parameters and u,v were vector embeddings of individual start and end tokens. Seeing
poor results from this technique, we decided to base our approach more closely to the approach
used in match-LSTM (described in 4.3). We investigated using different number of layers for the
unidirectional LSTM that integrates start token distribution into end token distribution in the Output
layer and found that using a > 1-layered LSTM increased overfitting (discussed in analysis section),
even with dropout, decreasing the performance of the model. We ran this method with the baseline
model to be able to investigate its efficacy in isolation.

For the fourth experiment, we combined the two approaches from second and third models introducing
our final model which had character embeddings as well as the coniditional pointer layer (from 4.2
and 4.3).

For our data augmentation experiments, we only ran partial training sessions. In our first trial,
we implemented our Shuffling technique on 5% of batches per epoch and used α = 0.1 (recall
that α is the percentage of each given sequence that is altered). We altered all four (context-word,
question-word, context-character, question-character) relevant sequences independently. Seeing
several problems with this, we changed our strategy during a second trial to alter only the question
(qw and qc), and swapping the same words in each sequence. This was to prevent questions and
contexts from losing important meaning. Meanwhile, we kept our 5% and α = 1 numbers the same.

5.4 Results

We see the results of our experiments in Table 1 above showing the F1/EM scores. Note that
we only have the test scores for some of our models due to our limited attempts accepted by the
leaderboard. We also show a chart of the AVNA (Answer vs No Answer) to better understand the
model’s classification accuracy considering only the answer vs no-answer predictions.

Configuration color F1 (dev) EM (dev) F1 (test) EM (test)
Baseline (BiDAF) orange 60.32 56.94 - -
Baseline w/ Char Embeds blue 61.98 58.62 - -
Baseline w/ Conditional fuchsia 60.84 57.39 - -
Conditional w/ Char Embeds gray 62.19 58.91 62.69 59.71
Baseline w/ Char Embeds, Data Aug - 61.99 59.08 - -

5

Figure 1. AvNA

6 Analysis

To understand how our models work, we looked over some of the examples from the dev set that
were passed into our models and the associated predictions and ground truth answers. We found that
all of our models had a common pattern in answering questions: Incorrectly answered questions were
not so different from the actual answer so as to be incomprehensible. When the model had been
marked incorrect in Exact Match, its prediction would often include too few or too many words, or
words that were close to (spatially within the paragraph) the correct set of words.
Another pattern we noticed was that a lot of the incorrect answers had either incorrectly answered
answerable questions with "No Answer", or incorrectly answered unanswerable questions with some
set of words. We think that the former may be a result of the model having an option to predict "No
Answer"; this option provides the model with a "safe" answer that it can pick when it is unsure of the
exact set of words that need to be used in the answer. The latter, we think, is due to the fact that
unanswerable questions can inherently be more convoluted than their answerable counterparts.

Crucially, in a lot of cases incorrectly labeled as "No Answer", we noticed that the misla-
bel was due to the fact that the context paragraph would answer the question with words that were
synonymous to, but not exactly the same as, the words used in the question. As a result, unsure
of whether two synonyms are correctly related for the answer, the model would answer with "No
Answer". Perhaps if that option were taken away, the option with next highest probability would have
been the correct answer.

Similarly, a lot of times when the ground truth answer was "No Answer", the model would
overemphasize words in the context that exactly matched words in the question. Naturally, a similar
type of behaviour was observed in the correctly predicted answers. Questions that used exact words
that appear in the context paragraph, and even more so if they are in the same sequence, were guessed
correctly. These behaviours can likely be attributed to the fact that we were working with a boundary
model that was looking for an answer which included two boundary words, as opposed to selecting
individual words that would answer the question.

In addition, after looking deeper into the testing examples, we can see specific cases where
our models perform well and where they still struggle. One example where our conditional models
outperforms the baseline is when the question is in tricky, unanswerable questions as seen below.

6

In this example, the baseline fails while our conditional model correctly concludes that
there is no answer. The question is asking about the "high pressure engine" while the context talks
about "stationary steam engine" being a component of the Industrial revolution. We hypothesize that
the added layer of attention on how long the answer should be allowed the model to realize that if we
extend the considered object "engine" to its modifiers, the context is actually referring to a different
object than the query. BiDAF likely simply had a high enough attention score with "engine" and
"component" enough to trigger an incorrect answer. While these examples might have improved they
were only a small part of the dataset and thus there wasn’t that much of an improvement shown. This
marginal improvement is not too surprising as its implementation on top of Match-LSTM was not
better than BiDAF but it was worth the effort to test it on a new base encoder model.

Even with conditioning our model still struggles to consider context with strange sentence
structure or when modifiers are very separated from some of the key words in the context. Consider
our conditional model’s output in the examples below.

In this example NSF is mentioned early in the passage while "engineered and operated" is
more in the middle of the passage and was likely a hint that this was a "hot spot" of where the
answer could be found. It is possible that because of a vanishing-gradient-like mechanism the earlier
information isn’t encoded correctly and thought to be closer to these words or even forgot. Because
of this misplacement the model ends up answering the wrong question (outputting the networks
and engineers and operator instead of recognizing that there was no answer to the question). A
self-attention mechanism would likely help with these types of mistakes to keep track of where in the
context words are.

Finally, with respect to data augmentation: our failure in our first run (5% of batches, modifying 10%
of context-word, question-word, context-char, and question-char embeddings independently) was
likely due to scrambling that was too severe. First of all, this strategy created memory issues at runtime
which prevented us from running this version through a full training session. Secondly, shuffling the
sequences independently created instances where one embedding would hold information for two
totally different words. Moreover, shuffling all four sequences likely resulted in a loss of meaning
between the context and question, which prevented the model from calculating a reasonable loss with
which to respond to its own prediction.

On the other hand, we did find an example where data augmentation improved the prediction. The
following is the given answer for the first data augmentation model, given the context:

Meanwhile, our ’Baseline w/ Char Embeds’ model answered ’St. Lawrence.’ It’s possible that we
prevented the model from overfitting the association between ’Who’ in the question, and ’St.’ in the
context. Of course, the association would be that saints are usually who’s.

Our second trial (5% of batches, shuffling 10% of question-word and question-char embeddings
together, i.e. same columns shuffled in each sequence, with a minimum of 2-column swap) acted on

7

par with the Baseline w/ Char Embeds for as long as we ran the training session. Hence we infer that
the changes made to the dataset were not significant enough to force a change.

7 Conclusion

In this paper, we have implemented and explored different layers on top of the baseline BiDAF and
measured their performance on the SQuAD 2.0 question-answering task. We achieved performance
of F1/EM 62.69/59.71 on Test Leaderboard on our final model that used both character embeddings
and a conditional layer. In our experimentation efforts, we found that the conditional layer was not as
effective in improving our model as we hypothesized, while the character embeddings made a distinct
improvement. We predict that there was enough information encoded in the baseline join distribution
for our condition approach to make much, although we showed it improved performance for certain
scenarios. We attributed the character embedding improvement to the additional out-of-vocabulary
flexibility it brings which reduces overfitting to whole words.

We hypothesize that with more data or time for iterations on the architecture we could have optimized
our model and improved its performance. We also believe that further implementation of data
augmentation would add to the performance of our model.

References
[1] Seo, Minjoon, et al. "Bidirectional attention flow for machine comprehension." arXiv preprint
arXiv:1611.01603 (2016)

[2] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Proceedings of the
Conference on Advances in Neural Information Processing Systems, 2015

[3] Shuohang Wang and Jing Jiang. Machine comprehension using match-lstm and answer pointer.
arXiv preprint arXiv:1608.07905, 2016.

[4] Wei, Jason, and Kai Zou. "Eda: Easy data augmentation techniques for boosting performance on
text classification tasks." arXiv preprint arXiv:1901.11196 (2019).

A Appendix (optional)

Contributions: In short we all contributed equally to the project. Alaskar focused on developing the
conditional layers although David and Daniel assisted with in group coding efforts. David and Daniel
worked on the character embeddings, tuning and data augmentation layers also with the support of
Alaskar. We all contributed to writing our respective sections on the write-up and poster.

8

	Key Information to include
	Introduction
	Related Work
	BiDAF
	Match-LSTM with Bi-directonal Ans-Ptr
	EDA

	Approach
	Baseline
	Character Embeddings
	Conditional Pointer Layer
	Data Augmentation

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion
	Appendix (optional)

