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Abstract

Question answering (QA) has gained wide significance in recent years with the
rise of chatbots and more powerful search engines, but the performance of current
models is still quite limited in domain adaptation settings in which models which
are trained on source training domains are tasked with generalizing to new target
data distributions where training data is limited. In this work, we hypothesize that in
QA settings, models fail to generalize to new data domains because they have overfit
to spurious correlations in the source domain training sets which do not generalize
to the target data distributions. Motivated by this hypothesis, we implement several
approaches to prevent QA models from overfitting to spurious correlations – dataset
augmentation with synonym replacement, debiasing techniques to prevent models
from using biased features during training, and lastly, ensembling methods which
combine multiple trained models with a mixture of experts. Early results show that
the synonym augmentation approach improves upon the several baselines, whereas
debiasing approaches does not achieve improved performance. We explore several
reasons for these results and discuss future steps to improve performance in domain
generalization for question answering.

1 Key Information to include

• Mentor: Sarthak Kanodia

• External Collaborators: No

• Sharing project: No

2 Introduction

Question answering (QA) is a prevalent and well-researched problem in NLP, with applications in
tasks such as information retrieval and the development of products such as dialog systems and
chatbots. However, while NLP models have achieved results superior to those of humans in various
such datasets, these models often fail to generalize beyond this dataset: past works [1] have shown
that models overfit to the source dataset on which they were trained, and fail to adapt to new domains
without further training. One potential reason for this patter is that models learn source-domain
specific biases such as predicting based on text near question-words as answers (regardless of context)
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(i.e., lexical overlap) or guessing an answer based on how early it occurs in the context (i.e., position
bias), and fail to capture patterns which are important when generalizing to new domains. As a result,
models that encode these biases are brittle and show poor performance on data that is dissimilar to
in-domain data (e.g. data with low lexical overlap).

We noticed this when looking more closely at the indomain vs. out-of-domain datasets. In the
following example from SQuAD, we can see that there is a very high overlap between the words in
the question and the words leading up to the answer in the context (called "lexical overlap"). Such a
paradigm can make it very easy for a model to expect the answer to lie in the sentence with the most
words in common with the question.

Question: "How many incoming students did Notre Dame admit in fall 2015?"
Context: "Notre Dame is known for its competitive admissions, with the incoming class enrolling in
fall 2015 admitting 3,577 from a pool of 18,156 (19.7%). The academic profile of the enrolled class
continues to rate among the top 10 to 15 in the nation for national research universities..."
Answer: "3,577"

On the other hand, as we can see from this example from the RACE dataset, the answer is much
more complicated to grasp, as it requires higher-order understanding of the relationship between
multiple sentences (connecting high shutter speed being "helpful" for any wildlife to lion being an
example of active wildlife). This cannot be gleaned from searching for high lexical overlap, as a
model trained on the indomain data is likely to do.

Question: "What will contribute to a satisfactory photo of a running lion in the wild?"
Context: "...Zoom and shutter speed For action or crowd shots, a fast shutter speed is a key factor.
¨When dealing with anything that’s active–wildlife or people in action on the street–faces change
within a tiny part of a second,¨said Arnold, ¨a fast shutter speed is helpful in shooting the several
hundred photos you might need to get that single winning shot.¨"
Answer: "shutter speed"

Enabling QA models to generalize beyond their training dataset is an important task: training new
large-scale models for each domain can become prohibitively expensive and inefficient. Training
models which can perform strongly on the training dataset, as well as generalize to other domains
by utilizing properties of the training set, is therefore an active area of research known as domain
generalization. Past works have sought to tackle the domain generalization challenge with large
language models such as BERT [2] which are pre-trained on large text corpora and fine-tuned on
the available training data from both the source data domains and target data domains. However,
BERT and other large language models are still negatively impacted by dataset biases and spurious
correlations in training data.

In this work, we aim to make large language models (LLMs) such as BERT more robust to dataset
biases present in QA settings. Our methods are motivated by the hypothesis that LLMs overfit to
dataset biases in the source training data – more specifically, lexical overlap biases in which the
question and answer contain high overlap in the words that are present. To prevent our models from
fitting to these biases, we explore the following three complementary approaches:

1. Dataset Augmentation with Synonym Replacement: to add data which does not contain
high lexical overlap between question and answer, we replace a specified fraction of words
in the question with synonyms from a WordNet model [3], and train a DistilBERT [4] model
on this augmented dataset.

2. Debiasing models: inspired by [5], we train a simpler, biased model with TF-IDF [6]
features alongside a DistilBERT model which is encouraged to learn features not captured
by the biased model.

3. Ensembling with mixture of experts: to combine the outputs of an ensemble of high-
variance predictors, we implement a mixture-of-experts model which outputs a weighted
combination of the predictions of the ensemble. We explore several ensembling techniques
in which the ensemble models are trained with debiasing (approach 2) and are trained on
various source domain sets.
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Our code can be found on Github 1.

3 Related Work

Domain generalization has been a well-studied topic in a variety of different fields. within NLP,
several popular approaches have focused on addveersarial training approaches in which models are
trained to learn domain-invariant features which are able to generalize to new domains [7]. These
approaches have also shown promise in other fields such as computer vision [7].

Other works have adopted dataset augmentation approaches which either increase the volume of
data in the target domains or improve the quality of source / target domain data through methods
such as synonym replacement and backtranslation [8]. Other methods have proposed analyzing the
dataset itself when making a prediction, for instance, by finding the most correlated in-domain dataset
compared to the training sample and using the model associated with that dataset for predictions.
Other works [9] have adopted meta-learning approaches to adapt in few-shot ways to new data
domains. In this work, we adopt ideas from ensembling via mixture of experts [5] and dataset
augmentation and apply them to QA settings.

4 Approach
In this section, we outline the three approaches discussed in Sec. 3 in more detail. To emphasize,
these approaches are motivated by the core hypothesis that the source domain sets have questions
which are much easier to answer than those in the test domain sets, particularly due to high lexical
overlap between the questions and answers in the source data domains. We describe each approach
individually before discussing how each method connects with one another. For each method, we
assume access to a set of a source in-domain training datasets and a set of target out of domain
training sets.

4.1 Dataset Augmentation with Synonym Replacement

To both increase the quantity of source-domain training data and to improve the quality of source-
domain training data, for each source domain training point, replace cp% of the words in the question
with synonyms obtained from a pre-trained WordNet [3] model. We then used this augmented
source-domain dataset to fine-tune a pre-trained DistilBERT model, which is subsequently fine-tuned
on the target-domain training sets.

Specifically, our synonym replacement approach involves the following steps to ensure high quality
of the synonyms which are chosen to replacement words in the sentence:

1. Isolate the words that were in common with the context and the question (called "lexical
overlap")

2. POS-tag every word in the sentence using WordNet’s dependency parser nltk.pos_tag (which
is trained on the Treebank corpus) to determine which words to replace with synonyms – we
ensure that the words that are replaced are non-proper nouns, verbs, adjectives, or adverbs
and do not replace stop-words. We also utilize stemming to prevent synonyms from being
morphological variants of the words they replace, and dependency parsing to ensure that the
synonym is the same part of speech of the word it replaces.

3. Iterate through each word in the question; after checking it’s lexical overlap performing a
tagging check, replace the word with a synonym with a probability of cp.

4.2 Debiased Models

The core idea behind the synonym replacement approach was to augment the data with samples
that would prevent the model from overfitting on spurious biases in the source domain data. In this
method, to more expicitly enable the DistilBERT model to learn patterns which are not biased or
based on lexical overlap and instead focus on aspects of the data which are more generalizable, we
implement debiasing approaches described in [5]. In this approach, a “biased” model is first trained

1https://github.com/akashvelu/cs224n_project
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Figure 1: Debiasing model architecture.

Figure 2: TF-IDF scores example.

on the in-domain source datasets, and is set-up such that it learns based on superficial patterns in the
data (e.g. lexical overlap with the question words). Using this biased model (which is now frozen), a
“robust” model is then trained in a manner such that it is encouraged to learn other non-trivial patterns
in the data that are more likely to generalize. Specifically, predictions of the biased model (denoted
as b) and the robust model (denoted as p) are combined to create a final prediction p̂ in the following
manner:

p̂ = softmax(log(p) + g(x) log(b))

Here, g is a learned mixing function that determines how much to weight the prediction of the bias
model for an input x. Note that during backpropagation when training the robust model, the weights
of the biased model are not updated. The robust model is subsequently fine-tuned on the out of
domain datasets. We call this method with a learned function g “Debiased Learned-MixIn”, and
without the learned function “Debiased”.

To ensure that the biased model learns based on biases in the source-domain datasets, its input is
computed with TFIDF scores which capture the overlap between the question and various sentences
in the context. The architecture of the biased model is additionally limited to a multi-layer perceptron
(MLP) to reduce its representational power compared to the robust model. The weighting model g is
learned MLP which takes as input the CLS token representation (output by a pre-trained DistilBERT
model) of the context and question.

As detailed by [5], to prevent the mixing model g from assigning a weight of 0 to the biased model
and ignoring the predictions of the biased model, we also implement a variant of this approach in
which the following entropy penalty term R is added to the standard-cross entropy loss:

R = wH(softmax(g(x)log(b))
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Here, w is a hyperparameter which determines the weight given to the entropy term in the loss. To
remain consistent with [5], we call debiasing with this entropy penalty “Debiased Learned-Mixin +
H”.

For the debiasing methods, we investigated the performance of debiased models trained on all source
datasets and fine-tuned on all target datasets, as well as the performance of an ensemble of debiased
models which were trained on individual source domain datasets on fine-tuned on individual target
domain datasets.
4.3 Mixture of Experts

Lastly, to take advantage of multiple high-variance models which were trained on the QA task at
hand, we implemented a mixture-of-experts (MoE) [10] based ensembling method which combines
the predictions of an ensemble of pre-trained predictors F = {f1, ..., fk} through a weighted sum:

f(x) =

k∑
i=1

wi(x)fi(x)

Here, w is a learned “mixer” function which determines how much weight to give to each “expert”
predictor in the ensemble. The primary motivation for implementing this method arose from the
fact that the debiased models often performed well when trained on a singular in-domain source
dataset and fine-tuned on a singular out-of-domain target dataset, but performed worse when trained
and fine-tuned on all datasets at once. We hypothesized that combining the predictions of multiple
debiased models which were individually trained on various individual in-domain source datasets
and fine-tuned on different individual out-of-domain target datasets would result in improved overall
performance.

Motivated by this observation, we learn a separate ensemble Fj and mixer wj for each out-of-domain
target dataset j. To make predictions at evaluation time, we implement two methods. In the first,
for each evaluation datapoint, we assume access to knowledge of the out-of-domain dataset that
the datapoint comes from and choose the corresponding ensemble and mixer. We call this method
“MoE”. In the second, to avoid the assumption of the knowledge of the out-of-domain dataset for each
datapoint, we first train a DistilBERT classifier to predict which out-of-domain target dataset a given
datapoint comes from, and use this prediction to then choose the corresponding ensemble and mixer
model. We call this method “MoE+Classifier”.

In our implementation w is a learned MLP which takes as input the CLS token representation (from a
pre-trained DistilBERT model) of the context and question. We additionally experiment with various
ensembles – in particular, Fj is either a set of debiased models (trained with the technique described
on 4.2) which were first trained separately on the (three) in-domain source datasets (resulting in
three models) and then individually fine-tuned on the j − th out-of-domain dataset, or a set of
non-debiased models which again were were first trained separately on the (three) in-domain source
datasets (resulting in three models) and then individually fine-tuned on the j − th out-of-domain
dataset.

• Out-of-domain finetuning: First, we trained the provided DistilBERTQA model on the
source domain datasets, and then subsequently fine-tuned this model on the small out-of-
domain training sets.

5 Experiments
5.1 Data

We use the datasets specified in the default final project guide. Models are typically first trained
on a combination of the in-domain train sets (Natural Questions, NewsQA, and SQuaD) and are
fine-tuned on a combination of the out-of-domain train sets (RelationExtraction, DuoRC, and RACE.
The validation data is a combination of the in-domain of out-of-domain datasets.

5.2 Evaluation method

We will be using the Exact Match (EM) score and F1 score metrics (as defined in the default project
handout).
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5.3 Experimental details

All experiments are performed under a batch size of 16 and a learning rate of 3e-5. Source domain
training is performed for 3 epochs, and models are evaluated on OOD validation sets every 10 batches,
during which the best model weights are recorded. We perform limited grid-search hyper-parameter
sweeps over learning rate (over the values 3e-05, 1e-05, and 1e-4) and and batch-size (over the values
16, 32).

Synonym Replacement: For the synonym replacement approach, augment the source domain
datasets by replacing cp% of words in the question with synonyms obtained from WordNet. Specifi-
cally, we tried replacing all relevant words in the in-domain source question with synonyms (cp =
1.0), and tried replacing 50% of relevant words in the question with synonyms (cp=0.50). Synonym
replacement was not used to augment the out of domain training set.

Debiasing models: We ran a series of experiments with the debiasing model approach. We first
experimented with the architecture of the biased model. Wee first maintained the bias model to be a
DistilBERT model trained in the in-domain source datasets, and operated on the assumption that this
baseline model would overfit on features such as lexical overlap. The robust model was kept to be the
same architecture and was trained via the scheme decribed in section 4.2.

The second approach follows [11], who suggest that the debiasing approach can fail if the "biased
model" learns more than the features you want it to capture. To address this, we sought to use a
much simpler model based on TF-IDF scores that only captured lexical overlap. TF-IDF scores for
each indomain train sample were generated by utilizing the TfidfVectorizer 2 and cosine similarity 3

functions from Scikit-learn. A feature vector of the TFIDF scores were then fed into an MLP of one
linear layer of size 384; this MLP was trained on the source domain datasets (with TFIDF features)
for 20 epochs, with a learning rate of 1e-3. Again, the robust model was designed to be a DistilBERT
model which was trained as is described in section 4.2, and is subsequently fine-tuned on the target
domain train datasets.

MoE Ensembling with Debiasing

When training on all 3 source datasets and evaluating on all 3 target domain datasets, experiments
with the debiasing approach depicted sub-optimal performance. Subsequently, we shifted towards
training a robust model on a single source domain dataset, and fine-tuning it on a single target domain
dataset. As there are three source datasets and three target domain datasets, this resulted in a total
of nine models. Analysis of these models demonstrated that the debiased models often displayed
improved performance (compared to a non-debiased baseline) in the target domain in which they
were fine-tuned. This motivated the approach described in section 4.3.

For each robust model trained, the corresponding biased model was kept to be an MLP architecture
with TFIDF inputs as described in section 5.3, whereas the robust models were DistilBERT models.
The classifier model and mixer models wj were also DistilBERT models with a linear layer appended
to the CLS token output. The classifier model is trained on the target domain data and achieved an
accuracy of 93% in validation data.

During evaluation time, for a given sample, the classifier first predictions with target domain dataset
the datapoint is from. The corresponding ensemble models Fj and the mixer model wj are chosen,
and are used to make the final prediction. We experiment with two prediction strategies: (a) a
weighted sum in which the final prediction is a weighted linear sum of the ensemble predictions (with
weights determined by the mixer) and (b) a pure prediction strategy in which the prediction of the
ensemble model with the highest weight is used (caalled choose

5.4 Results

The best synonym replacement model improved upon the baseline F1 score by 2.45 %. However,
neither of the debiased or MoE models resulted in better scores.

We noticed that the debiased models trained separately on each of the in-domain datasets perform
better than their non-debiased equivalents. However, training on all the source datasets together-
results in a degraded performance. On breaking up the results by out-of-domain dataset, we found

2https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
3https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine_similarity.html
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Training Run EM-Scores F1-Scores
Baseline 34.55 49.88
Baseline Fine-tuned 36.13 50.24
Synonym Replacement (cp = 1.0) 34.03 48.78
Synonym Replacement (cp = 0.5) 36.91 51.10
Debiased Model 32.46 49.07
Debiased Model (with entropy penalty) 32.72 48.83
MoE with non-debiased models 34.03 48.34
MoE with debiased models 34.35 49.48

Table 1: Final results for the experiments, on the dev validation set. Baseline denotes a DistilBERT
model trained only on source domain datasets. Baseline Fine-tuned denotes a DistilBERT model
trained in source domains and fine-tuned on target domains. The other rows indicate results from the
methods described in section 4, with each model being trained on all source domains and fine-tuned
on all target domains.

that the MoE model is better than the 3 relevant expert models in the RACE DuoRC datasets, but not
the Relation Extraction dataset. We also saw that using the weighted result instead of sampling the
model with the highest weight gave better scores.

As shown in the Appendix, we also noticed that ensembling a set of models with a MoE often
improves upon the performance of any given model in the ensemble; this is particularly true in the
RACE and DuoRC datasets, in which ensembling improved upon the performance of any individual
model (this is not true for Relation Extraction).

Our highest performing test set scores were from the Synonym Replacement (cp = 0.5) with
scores F1: 58.564 and EM: 40.986, and achieved a EM score rank of 6 and F1 score rank of 21
in the validation leaderboard (as of March 14th).

6 Analysis

Error Analysis for Debiased Model

We looked at the predictions made by the debiased model vs our best model (synonym replacement)
to find insights on how the debiased model was performing- in terms of how it was making predictions
differently, what it got right and where it went wrong. In Table 2, we consider two examples from the
RACE dataset- one in which the debiased model predicts the correct span and one in which it does
not.

In Example 1, the word ’computers’ (key word that appears in the question) does not occur in the
sentence containing the answer and the debiased model is able to use other strategies to identify the
correct answer span while the best model suffers. However, in the Example 2, the answer is contained
in a sentence with semantically similar words as the question (’poor’/’depressed’, ’subjects’). The
biased model identifies a different sentence in this case as well.

From these examples, it is clear that the biased model captures alternative strategies to lexical overlap
which helps it answer questions where the answer is contained in regions of lower lexical overlap
with the question . This is demonstrated in other examples we evaluated as well. However, a major
drawback of the debiasing seems to be that it forces the model to look away from the high-overlap
region even in examples where the answer span is contained in this region. We wanted the model to
selectively look elsewhere when it recognises that the biased model prediction is unreliable. However,
it seems to do it almost always- indicating that the weighting function g doesn’t work as expected.

Validation of Hypothesis on Different Source Datasets

Another reason for the debiasing method performing below our expectations can be attributed to the
fact that the lexical overlap bias is less dominant in the News QA and Natural Questions datasets in
comparison to SQuAD. Table 3 shows the improvement in F1 scores made by models (baseline and
debiased) trained separately on the the three source datasets when evaluated on the OOD Validation
datasets. Clearly, SQuAD gains significantly in comparison to the other two. Other biases such as
positional bias (Ex: preference for choosing answers that occur near the start of the context) might
have been more applicable choices for them.
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Example 1 Example 2

Context

In industry, computers mean automation , and
automation means unemployment. Computers
in the United States have already begun to take
the place of workers whose tasks are simple.
The variety of jobs, done only by humans in
the past, which the machine can perform more
rapidly, accurately and economically, increases
with each new generation of computers. If we
follow this trend, we will be faced with mass
unemployment for all but a handful of highly
trained professionals who will be more power-
ful and overworked than they are now.

The teaching arrangement filled
me with fear. I was to divide
the class of twenty-four boys,
aged from seven to thirteen, into
three groups and teach them all
subjects–including art, football,
cricket and so on–in turn at three
different levels. Actually, I was
depressed at the thought of teach-
ing algebra and geometry–two
subjects in which I had been
rather weak at school.

Question
Which kind of the following persons will be
the first to be employed if computers continue
to develop?

Which subjects was the writer
poor at?

Label highly trained professionals algebra and geometry
Debiased
Model
Prediction

highly trained professionals art, football, cricket

Best
Model
Prediction

workers whose tasks are simple algebra and geometry

Table 2: Comparison of debiased model predictions on different types of examples. Debiased Model
Prediction refers to the prediction of a debiased model trained with the entropy loss term, and best
model prediction refers to the prediction of the best trained model, which uses a synonym replacement
dataset augmentation technique.

Model SQuAD News QA Natural Questions
Baseline 42.61 40.55 37.90
Debiased 44.53 41.02 38.11

% Improvement 4.5 1.2 0.55

Table 3: F1 scores on OOD Validation Set. Baseline refers to to a DistilBERT model trained only on
source domains. Debiased refers to a DistilBERT model trained only in the source domains with the
debiasing scheme discussed in Section 4

Model performances on Different OOD Datasets: All the models considered show especially
poor performance on the RACE dataset (Refer tables in Appendix). RACE is created by teachers
for Chinese School English Examinations while the other datasets are crowd-sourced. Thus, the
questions on it require higher ordering reasoning to answer and all the methods we implemented
motivate the model to address this challenge.

7 Conclusion

Our core hypothesis that source domain biases prevent models from generalizing to target domains
was validated by the improved performance of the synonym replacement method. Tackling this
challenge with debiasing models demonstrated promising but overall worse results, suggesting that
further investigations into this technique and its failure points would be an interesting direction of
investigation. What we learned: critically analyzing past papers and works, implementing methods
we thought were promising, and developing our own extensions was a fun and educative process.
Limitations of our work: Our work does not extensively investigate reasons for the suboptimality of
the debiased model approaches past limited qualitative analysis. We also did not extensively tune
the weighting model in the debiasing approach; performing better hyperparameter sweeps would be
a good next step. For future work, we will look at methods to automatically detect source dataset
biases.
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A Appendix

We include the complete set of results for all the experiments we ran below, divided up by each of the
out-of-domain datasets. Here we compare the performance between the methods we ran (as opposed
to comparison with the baseline performance).

Debiasing and MoE Ensembling approaches:

• Results on DuoRC dev set:
Training Run EM-Scores F1-Scores
Debiased trained on NewsQA only 28.57 40.57
Debiased trained on Natural Questions only 21.43 33.35
Debiased trained on SQUaD only 23.81 32.55
MoE Ensembled debiased model (weighted sum) 32.54 41.65
MoE Ensembled debiased model (choose highest weight) 21.43 33.35
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• Results on RACE dev set:
Training Run EM-Scores F1-Scores
Debiased trained on NewsQA only 17.97 30.37
Debiased trained on Natural Questions only 11.72 23.80
Debiased trained on SQUaD only 14.84 30.29
MoE Ensembled debiased model (weighted sum) 17.97 32.88
MoE Ensemble debiased model (choose highest weight) 14.84 29.54

• Results on RelationExtraction dev set:
Training Run EM-Scores F1-Scores
Debiased trained on NewsQA only 55.47 75.11
Debiased trained on Natural Questions only 54.69 73.15
Debiased trained on SQUaD only 53.12 71.90
MoE Ensembled debiased model (weighted sum) 54.69 73.65
MoE Ensemble debiased model (choose highest weight) 54.69 71.69

• Summary of important results:

Training Run DuoRC RACE RelationExtraction
EM-Scores F1-Scores EM-Scores F1-Scores EM-Scores F1-Scores

Debiased model trained on NewsQA only 28.57 40.57 17.97 30.37 55.47 75.11
Debiased model trained on Natural Questions only 21.43 33.35 11.72 23.80 54.69 73.15
Debiased model trained on SQUaD only 23.81 32.55 14.84 30.29 53.12 71.90
MoE Ensembled debiased model (weighted sum) 32.54 41.65 17.97 32.88 54.69 73.65
MoE Ensembled debiased model (choose highest weight) 21.43 33.35 14.84 29.54 54.69 71.69
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