Building QANet from Scratch

Stanford CS224N Default Project

Nathaniel Chien
Department of Computer Science
Stanford University
nchien2@stanford.edu

Abstract

Question answering models have been the standard in NLP for demonstrating
reading comprehension, and recent developments in model architecture have greatly
increased performance. One of the most important innovations has been the
application of the transformer architecture to question answering through the
QANet architecture. In this paper, I describe my own implementation of QANet
based on the original model. My model was able to improve performance on the
Stanford question answering dataset when compared to a standard BiDAF model,
despite issues with overfitting that decreased test performance. Through analysis
of my model results, I have identified potential limitations of QANet, and found
that it trains more slowly than recurrent models when limited by memory and
computational power.

1 Key Information to include

¢ Mentor: Elaine Sui
¢ External Collaborators: N/A
 Sharing project: No

2 Introduction

The problem of question answering has been considered since the 1960s, both as a potential tool
for everyday use and as a measure for evaluating machine learning models’ accuracy. Intuitively, a
model that has reading comprehension good enough to answer questions about a passage is able to
demonstrate a strong understanding of language. Besides their roles as metrics, question answering
models are also commonly utilized in modern search engines, and there is ongoing research about the
potential of using them as knowledge bases [1]].

A majority of question answering models are developed using the Stanford question answering dataset
(SQuAD), which is the most popular dataset for testing reading comprehension. Performance on
SQuAD has increased drastically over the past years as architecture has developed, with the use of
attention and recurrence in particular leading to significant improvements in accuracy and speed. Two
models of note that use SQuAD are the Bidirectional Attention Flow (BiDAF) [2]] and QANet [3]]
models. The BiDAF model was state of the art until recently, and uses a combination of self-attention
and recurrent neural networks to encode passages. QANet improved upon BiDAF by applying the
transformer architecture, significantly speeding up training and improving accuracy. Newer models
have continued to build upon the concepts from BiDAF and QANet.

Current state of the art models have ’solved” SQuAD, and are able to achieve performance that is
comparable with human understanding. Despite this, there are still limitations for many models. In
order to challenge models and force them to greater understanding of language, researchers have
developed new adversarial data with more difficult questions. One such example is the triviaQA
dataset [4], which contains manually curated questions that require greater understanding. Another

Stanford CS224N Natural Language Processing with Deep Learning

Model One Encoder

Eng Probability

Encoder Blocks
Stackad Modal
Encoder Blocks.
Encodar Biocks

Context-Cuery Atiention

L
——> () Fepeat
Conv

Layernorm

Sitacked Embedding

Stacked Embadding
Encoder Blocks Encoder Blocks

Embedding Embedding

! Position Encoding E J
Context Question

Figure 1: Model architecture from QANet paper. (Will replace with my own graphic once my
implementation is finalized)

example is SQuAD v2.0, the dataset used in this paper, which also contains some questions with no
answers. While the innovations of QANet have lead to great improvements in question answering,
there are still many improvemnets yet to be made.

3 Related Work

For this project, my goal was to implement my own version of the QANet model from scratch, as
defined in (Yu et al., 2018). Specifically, QANet is a transformer model that has been adapted to work
on text data, utilizing convolutional layers instead of the LSTMs used in the Bidirectional Attention
Flow model that preceded it. These LSTMs apply a network with shared weights over the entirety of
the text in order to encode local structure. However, they are slow to train since data must be fed
into the layer sequentially. Convolutional layers don’t have this limitation and are parallelizable,
which allows QANet to have much faster performance both for training and evaluation while being
competitive with BiDAF. The authors of the original QANet paper also leveraged this greater training
speed, using data augmentation to generate more questions and further increasing performance. Since
the development of QANet, there have been several other models that have significantly improved
upon it. The most well-known current model, BERT, uses the same basic transformer structure while
also applying bidirectional training and pre-training on objectives with easily generated data. While
QANet is no longer the state of the art, its innovations have paved the way for current research and
models.

4 Approach

Starting with the BiDAF baseline, I modified the architecture in order to imitate the original QANet
model, with some minor changes.

4.1 Embeddings

The first part of my implementation was to add character-level embeddings. As described in (Seo et
al., 2018) [2], these embeddings can more accurately encode meaning behind subparts of words, such
as specific prefixes and morphemes. The provided baseline already provides character embedding
initializations which I processed based on the methods described in (Kim, 2014) [5]. The initial-
izations are used to create character-level representations for each word, which are then convolved
and maxpooled to obtain a vector of fixed length for each word. These character-level embeddings

are then concatenated with the word-level embeddings, and passed into a 2-layer highway network
before being used by future layers.

4.2 Encoder

The next part of the model, which is the key innovation of QANet, is the encoder block. These blocks
use parallelizable convolution layers instead of recurrence. Each block is composed of a a positional
encoding, a repeated layer of convolutions, a self-attention layer, and a feedforward network.

4.2.1 Positional Encoding

The positional encoding, as described in (Vaswani et al., 2017)[6l], makes up for the limitations of
removing recurrence by allowing the model to utilize the sequence’s order. For each position index
pos, and for each dimension of the embedding ¢ up to half of its total size, the positional encoding is
defined as follows:

PE (o5 2i) = sin(pos/10000%/¢mb-dim)
PE(pos,2i41) = cos(pos /100002 emb-dimy

This sinusoidal function allows the model to encode word position into the embeddings. This is
important since the QAnet model removes the recurrent networks from BiDAF, which implicitly take
position into account. Intuitively, the sinusoidal function is particularly good for representing position
since PE,,s41 can be represented as a linear function of PFE,,, for any k. After the positional
encodings are calculated, they are then added to the word and character-level embeddings, before
being passed further into the encoder block.

4.2.2 Depthwise separable convolutions

The next layer is a stacked depthwise separable convolution (Chollet, 2016) [7]. A depthwise
separable convolution is a convolution that has been split into two operations: a depth-wise and
point-wise convolution. The depth-wise convolution transforms the matrix while maintaining its
depth, and the point-wise convolution uses 1x1 kernels that iterate through every point and expand
the output depth to be equal to the number of kernels. In practice, this decomposition is much
more computationally efficient than a typical convolution, and its reduced expressivity has relatively
low impact in complex models. The usage of convolutions instead of recurrent networks is the key
innovation of QANet. Convolution are able to perform the same function of capturing local structure,
while being parallelizable and allowing for faster model training. By itself, QANet’s performance
is on par with BIDAF’s. But when you take advantage of its increased training speed and use data
augmentation to generate more questions, it is able to achieve a higher performance.

4.2.3 Self-attention

Next, the output of the convolutional layers is passed into a self-attention layer. As described in the
original R-net papelﬂ self-attention allows representations of questions and passages to attend to
important context clues outside of its local window. Specifically, self attention is found by calculating
similarity score between vectors within a query/context, taking the softmax to generate a distribution,
and then using this distribution to take the weighted sum and generate an attention output. Specifically,
the R-net paper defines it as

sh = v tanh(vaJP + vaf)

al = Softmaz(st)

i
n

c = g atv?
i=1

Where ¢ represents the index of the word for which attention is being calculated, and ¢ represents
the index of the word that ¢ is attending to. The final output, c;, is the attention output for word ¢. 1

"https://www.microsoft.com/en-us/research/wp-content/uploads/2017/05/r-net.pdf

utilized the built-in pytorch MultiheadAttention class, which acts as a self-attention layer when the
same data is passed in as the key, value, and query. Finally, this output is passed to a final feedforward
layer that generates an output with the .

4.2.4 Residual Connections and Dropout

Following the architecture as described in the paper, I also implemented residual connections between
every sub-layer in the encoder block. These connections directly pass data between layers without
transforming it, which helps avoid distorting important information as it is passed through the block.
The original QANet model also included layer dropout, in which layers in the encoder have a certain
probability to be skipped completely. Due to time limitations, I did not implement this feature.
However, I did add ordinary, node-wise dropout between layers.

4.3 Context-Query Attention

I then pass the output of the encoder to a Context-Query attention layer which finds the most relevant
words in the passage based on the question. I simply used the same layer defined in the baseline
BiDAF model, which first calculates a similarity matrix S as follows

Sij = Wimlci;gjicioqs] € R

Softmax is then applied to this similarity matrix to calculate a distribution S, which is applied to the
question encodings to calculate attention outputs.

S;.. = softmax(S; .)
M
ai =y Si;q
j=1

4.4 Model Encoders

The output of the context-query attention layer is passed to three layers of stacked encoder blocks
with the same architecture as described above, except with only two stacked convolutions per encoder.
In order to train the model with the limited memory on my virtual machine, I also decreased to
number of stacked blocks per layer to 5, rather than the 7 in the original paper. These three layers
also share weights, using the same 5 encoder blocks.

44.1 Output

The output is calculated as described in the original paper, by concatenating the intermediate outputs
of the model encoder layers, then passing them into a linear layer and softmax. This gives us two
probability distributions over the positions in the context, one for the span start position and another
for the end position.

S Experiments

5.1 Data

I tested my model on the Stanford question answering dataset (SQuAD), which is composed of
manually annotated datapoints. Each point includes a passage selected from English Wikipedia, a
crowd-sourced question, and an answer which is defined as a short span in the passage. The goal
of any model using SQuAD is to predict span that gives the correct answer given the passage and
question. I am also using the updated SQuAD v2.0 dataset [8], which also includes crowd-sourced
questions that are designed to be unanswerable, based on the same articles as the original SQuAD
dataset. In total, there are approximately 150k question-passage pairs, of which around one-third are
unanswerable. The inclusion of these unanswerable questions makes the task of predicting answer
spans significantly more difficult, and potentially forces models to express a better understanding of
text and relationships.

5.2 [Evaluation method

I use the same two evaluation metrics used in the original QANet paper, which are F1 and exact
match (EM) accuracy. F1 accuracy is a measure of the proportion of overlap between the predicted
and true answers, while EM accuracy is 1 if the predicted answer exactly matches the true answer,
and 0 otherwise. For the purposes of this project, I also compared my results directly with a baseline
BiDAF model that was provided to students. This model achieved a dev set F1 score of 61.431, and
EM score of 58.074.

5.3 Experimental details

Before implementing QANet, I familiarized myself with the baseline code by modifying the provided
BiDAF to include character embeddings. I ran this model for 30 epochs with the same hyperparam-
eters as the baseline: a batch size of 64, a learning rate of 0.5, a dropout rate of 0.2, and a model
dimension of 100.

After implementing QANet, I ran my model for 30 epochs with the same hyperparameters described
in the original paper. I used a batch size of 32, a learning rate of 0.001 with an exponentially
increasing wake-up period, a dropout rate of 0.1, and a model hidden dimension of 128.

5.4 Results

F1 EM
tag: dev/F1 tag: dev/EM

= i El\

ra
La

Figure 2: F1 and EM scores for the baseline (orange), character embedding (green), and QANet
(blue) models

After training my models, I observed increased performance for both the character embedding and
QANet model on the dev dataset when compared to the baseline scores of 57.049 for EM and 60.686
for F1. My character embedding model achieved an EM score of 60.881 and an F1 score of 64.244,
and my QANet model achieved an EM score of 63.199 and an F1 score of 66.895. However, upon
submitting my results to the test leaderboard, I found that my scores for QANet were significantly
lower on the test dataset than the dev dataset, with an EM score of 58.428 and an F1 score of 62.343.
On the test dataset, my QAnet model achieved only minor increases in accuracy over the baseline.

I first believed that this discrepancy in accuracies was due to overfitting on the dev dataset, and so I
retrained the model using a higher dropout, and stopping at an earlier epoch when the training loss
had started to plateau. However, this actually led to a further decrease in accuracy and scores below
the baseline. Given these strange results, [am unsure whether or not this is an issue with overfitting,
or some other bug with my model implementation. Unfortunately, due to the limited number of
submissions to the test leaderboard I was unable to resolve this issue. If given more time I would
continue to experiment with regularization methods and learning rate schedulers to try to resolve this
issue.

6 Analysis

My QANet architecture is able to obtain better performance on the dev set than the baseline, but it
still fails at many of the same tasks that the BIDAF model does. For example, consider the following
examples:

Question:Orientalism refers to how the South developed a what of the North?
Context:Orientalism, as theorized by Edward Said, refers to how the West developed an imaginative
geography of the East. This imaginative geography...

Answer: N/A

Prediction: imaginative geography of the East

In this example, the model makes a prediction when the question asks about "the South’, despite
the word ’South’ not appearing anywhere in the text. It instead answers about "the East’, seeming
to interpret the two directions as the same entity. This could be indicative that the generated word
embeddings are not specific enough. Because South’ and "East’ are both directions often used in
similar contexts, their embeddings are similar enough that the model cannot distinguish them. This is
a demonstration of the limitations of our embeddings.

Question:What country was under the control of Norman barons?

Context:Subsequent to the Conquest, however, the Marches came completely under the dominance of
William’s most trusted Norman barons, including Bernard de Neufmarché, Roger of Montgomery
in Shropshire and Hugh Lupus in Cheshire. These Normans began a long period of slow conquest
during which almost all of Wales was at some point subject to Norman interference...
Answer:Wales

Prediction:Cheshire

The reasons for the model’s incorrect prediction are more ambiguous in this example, but I believe it
demonstrates one specific failing of my model. This answer demonstrates a lack of understanding
of the world. A human reading this passage would immediately discount Cheshire as a potential
answer, since Cheshire is not a country. However, our model has very little capacity to learn this
general information. The inability to answer questions such as this is one of the major motivations
for ongoing research in integrating knowledge into language models.

Another interesting observation was that my QANet model trained significantly slower than the
baseline, with about one-third of the iterations per second. This result was surprising because one of
the main draws of QANet is it’s fast training time. However, through discussion among students I've
learned that this may be due to the limited memory and processing power of the machines that we
were working on. QANet is faster only because it is parallelizable, and without the computational
power to take advantage of this parallelizability, it runs more slowly than BiDAF.

7 Conclusion

Building my own version of QANet proved to be much more difficult than I anticipated, but through
my implementation I became much more familiar with transformer architecture, the motivation
behind it, and the small details that one must account for when constructing and training a model.
There are countless potential improvements to be made, from implementing details that I left out
such as layer-level dropout and data augmentation, to experimenting with different regularization
techniques and tweaking the model architecture. Despite bugs or problem with overfitting that have
led my model to have poor results on the test dataset, I successfully implemented the key components
of QANet, including character and positional embeddings and the encoder block.

References

[1] Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang, Maosong Sun, and Qun Liu. ERNIE:
enhanced language representation with informative entities. CoRR, abs/1905.07129, 2019.

[2] Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional
attention flow for machine comprehension. CoRR, abs/1611.01603, 2016.

[3] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mohammad Norouzi,
and Quoc V. Le. Qanet: Combining local convolution with global self-attention for reading
comprehension. CoRR, abs/1804.09541, 2018.

[4] Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. Triviaga: A large scale
distantly supervised challenge dataset for reading comprehension. CoRR, abs/1705.03551, 2017.

[5] Yoon Kim. Convolutional neural networks for sentence classification. CoRR, abs/1408.5882,
2014.

[6] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.

[7] Francois Chollet. Xception: Deep learning with depthwise separable convolutions. CoRR,
abs/1610.02357, 2016.

[8] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable
questions for squad. CoRR, abs/1806.03822, 2018.

	Key Information to include
	Introduction
	Related Work
	Approach
	Embeddings
	Encoder
	Positional Encoding
	Depthwise separable convolutions
	Self-attention
	Residual Connections and Dropout

	Context-Query Attention
	Model Encoders
	Output

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion

