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Abstract

In this paper, we explore the Question Answering task on the SQuAD 2.0 dataset
using two models: BiDAF (Bi-Directional Attention Flow) and QANet, which
leverages local convolution and self-attention. First, we added character embed-
dings and self-attention to the baseline BIDAF model, which improved our F1 and
EM scores to 63.64 and 60.29. Then, we implemented the QANet model, which
failed to improve performance beyond the baseline but was nonetheless rewarding
to experiment with.

1 Introduction

Recently, we have seen a rise in end-to-end neural networks to perform question answering tasks.
QA systems aim to answer the input question given the context paragraph, and therefore have many
important applications such as search engines and dialogue systems. Designing an effective QA
system is a complicated task that requires many considerations, such as linguistic nuances within
different wordings and the possibility of unanswerable questions. Much of the past work done in the
question answering field leverages pre-trained language models (PLMs), but recent work has seen a
trend towards attention-based models rather than recurrent models (RNNs). Attention mechanisms
allow models to establish connections among different network layers. As such, even though we
focused the first part of our project on enhancing the BiDAF model using character embeddings and
self-attention, we also attempted to implement QANet, an attention-based model that leverages local
convolution.

Overall, we were able to achieve a notable performance increase with our implementation of character
embeddings (F1 = 63.64, EM = 60.29). The addition of self-attention also improved scores beyond
the baseline model, but unfortunately did not surpass the character embedding model. Additionally,
our QANet implementation achieved linear scores of 52.19 due to some minor implementation issues
that we were unable to debug within the time constraints of this course. However, it was rewarding to
experiment with a complex model, learn how to implement an encoding system with convolution
modeling local interactions and self-attention modeling global interactions, and explore question
answering beyond RNNs.
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2 Related Work

The first section of our project focuses on optimizing the BiDAF model’s performance. In 2016, Seo
[1]] proposed the BiDAF model, which is a hierarchical multi-stage architecture for modeling context
paragraph at different token sizes such as character-level, word-level, and contextual embeddings.
This is an advancement to the existing work surrounding the attention mechanism. In this model, the
attention layer is computed for every time step, allowing the attention vector from the previous layer
to flow through to the next layer. Traditionally, the attention layer summarizes the context into a fixed
size vector. The new model does not use early summarization, helping it retain more information. In
addition, the attention is memory-less, which means each step’s attention is independent from the
previous step as it is a function of only the query and the current context paragraph. This is useful
because incorrect attention will not carry through the layers, allowing for more distribution of work
between the attention and model layer. Most importantly, the paper’s method uses attention from
both directions, query-to-context and content-to-query, which allows complimentary information to
flow both ways.

Yoon Kim’s [2] work inspired our implementation of character embeddings to the BIDAF model.
At a high level, Kim’s work used a single convolutional layer and max-pooling for sentence-level
classification tasks.

We also experimented with self-attention, which relates different positions of a single sequence in
order to compute a representation of the same sequence. Self-attention has been shown to be very
useful in machine reading, abstractive summarization, and image description generation. Specifically,
we examined the self-attention mechanism as outlined by the R-Net model introduced by Microsoft
Natural Language Computing Group [3]. First, the network matches the question and passage with
gated attention-based recurrent networks (RNNs) to obtain the question-aware passage representation.
Then, it uses a self-matching attention mechanism to refine the representation by matching the
passage against itself.

Finally, QANet differs from BiDAF in that the encoder block is made up of convolution and multi-
head self attention with no recurrence [4]. The idea of only using self attention and feed forward
blocks to model natural language was introduced by the network architecture Transformers [S]].
Multi-head attention is also applied by both the Transformer and QANet models. By computing the
attention numerous times, it was observed that the model could simultaneously attend to input from
distinct representational sub-spaces at different places, resulting in higher scores.

3 Approach

3.1 BiDAF

1. Baseline We used the provided fully-functional BiDAF model with pre-trained 300-D
GloVE word embeddings as a starting point for our project. The model is based on the
BiDAF network [[1]].

2. BIiDAF with character embeddings The baseline model only had word embeddings, and
we improved it by adding a 200-D character-level embedding layer. We concatenated
the character embeddings with the word vectors and fed that through an encoder layer,
Context-query attention layer, modeling layer and output layer. More specifically, we
implemented a CNN with one layer of 2D convolution followed by a kaiming normal of
the character projection weights to account for the non-linearity of activation functions (i.e.
ReLU activation). Then, we max-pooled the CNN’s outputs to get a fixed-size vector for
each word. The output of the CNN was inputted into the highway network. [6]]. Our main
motivation for adding the character embeddings was to capture meanings at a more granular
level, which helps with predicting out-of-vocabulary and unseen words.

3. BiDAF with self-attention Next, we implemented self-attention as outlined in the "R-Net:
Machine Reading Comprehension With Self-Matching Networks" paper, which uses the
current passage word and its matching question information to extract evidence from the
whole passage. The resulting passage representation h{ is as follows [3]:



hf = BiRNN(htFLI, [Uf,ct])
where ¢; = att(v”,v[) is an attention-pooling vector of the whole passage (v*):
sh = vTtanh(Wv + WFof)
n
ai = exp(si)/ 25—, exp(s})
e =2 afl

32 QANet

The QANet model follows the same high level implementation as the BIDAF model, and contains
five major components: an embedding layer, an embedding encoder layer, a contex-query attention
layer, a model encoder layer, and an output layer. This high level implementation is shown in Figure 1
on the left, which is taken directly from the QANet paper. Rather than RNN/LTSMs, the layers in the
QANet model are built using transformer style encoder blocks, with the high level implementation
being shown in Figure 1 on the right. Our implementation was inspired by Yu et al. [4] and the
repository suggested on Ed (https://github.com/BangLiu/QANet-PyTorch).

1. Embedding Layer
For our embedding layer, we reused the word and character embedding implementation we
designed for BiDAF.

2. Encoder Block
This is the main component of QANet. A sinusoidal positional encoding is added to the input
to the Encoder Block, before being fed into a series of three residual blocks, which consists
of a series of convolution layers, a self-attention layer with 8 heads, and a feed-forward
layer. This is illustrated on the left of Figure 1. Each of the residual blocks performs the
following operation:
f(z) = x + Layer(Layernorm(z))

The Layernorm function represents the layer-normalization that each residual block performs
on the embedding dimension.

Block

End Probability (

Softmax

Model One Encoder T

Start Probability

Softmax

Linear

Linear

E=p

I
J

Concat Concat

Stacked Model
Encoder Blocks
Stacked Model
Encoder Blocks
Stacked Model
Encoder Blocks
A
( Context-Query Attention ) —> a Repeat
Stacked Embedding Stacked Embedding
Encoder Blocks Encoder Blocks
Embedding Embedding

Self-attention

Layernorm

Conv

U

Layernorm

K Paosition Encoding /

I

Context Question

Figure 1: A visualization of the QANet architecture. Left: High level structure of the QANet Model.
Right: High level structure of a single Encoder Block.



3. Embedding Encoder Layer
This layer encodes the context and the question. It is made up of a single encoder block,
with parameters defined in Yu et al [4]]. For this layer, we used a kernel size of 7, and 4
convolution layers with filter size 128.

4. Context-Query Attention
We applied the BiDAF context-query attention mechanism to QANet. [1]

5. Model Encoder Layer
This layer consists of a series of 3 stacked model encoder blocks. Each one contains 7
encoder blocks, again with parameters defined in Yu et al [4]. For each encoder block, we
used a kernel size of 5, and 2 convolution layers with filter size 128.

6. Output
Our output layer computes the softmax using two different concatenations of encoder
outputs. Let My, M7, M, denote the output of the encoder block stack. The loss function is
computed as the negative sum of log probabilities of the predicted distributions averaged
over all training samples. Here, we predict the probability of each position in the context
being the start or end of an answer span:

Pstart = SOfthLJ?(WO [M07 Ml])
Popa = softmax (W [My; Ms))
where W and W7 are learnable parameters.

4 Experiments

4.1 Data

We used a subset of the official SQuAD 2.0 dataset, which has already been split into the training,
dev, and test sets, with each example in the dataset being split into (context, question, answer) triplets.
The training set is 40 MB, consisting of 129,941 examples, the dev set is 4 MB, consisting of 6078
examples, and the test set is 4 MB, consisting of 5915 exmaples. We used the provided preprocessing
code to retrieve the word tokens and populate our counters.

4.2 Evaluation method

To evaluate our model’s performance, we used Exact Match (EM) and F1 scores. EM is a strict binary
measure indicating whether the output matches ground truth, whereas F1 is the harmonic mean of
precision and recall. As indicated in the spec, we averaged the EM and F1 scores across each set to
get our final scores.

4.3 Experimental details

For every model, we trained on the SQuAD 2.0 training set provided using a learning rate of .01, a
batch size of 64, a dropout probability of 0.1, and a maximum answer length of 15. The models were
trained on NV6 Azure VM.

For the BiDAF model, we trained for 30 epochs in about 3 hours with the default hyper-parameters.
After implementing character embeddings, training took over 4 hours and improved the scores by
over 2 points (as shown below). We then changed our RNN type from bidirectional LSTM to GRU,
which improved training efficiency to about 3 hours. Unfortunately, using GRU slightly decreased
scores. We also experimented with regulation by using different dropout rates, but it did not cause a
notable improvement.

For the QANet model, we trained for up to 5 epochs, with a batch size of 16 to avoid memory errors
on the Azure VM, and a hidden size of 128 to match the number of filters in the Encoding Block that
was suggested by Yu et al [4]. As will be explored in the Results and Analysis sections, due to the
abnormal plateauing behavior of the QANet model, we deemed it unnecessary to waste additional
resources training past 5 epochs to observe a longer score plateau. For this model, we experimented
with learning rates of 0.5, 0.1, 0.005, and 0.001, as well as a learning rate warmup for 1000 steps



from O to 0.001. Unlike the original QANet implementation, we added a dropout after both the
self-attention layer normalization and the feed-forward layer normalization in the Encoder Block, in
addition to once every other layer for the convolution layers. Additionally, for the Encoder Block in
the QANet model, we integrated the stochastic layer dropout suggested by Yu et al [4]. This method
randomly drops individual sublayers within the Encoder Block with probability p; = 1 — %(1 - L),
where L is the total number of sublayers and p;, = 0.9 is the survival probability of the last layer.

4.4 Results

Model F1 EM
Baseline 61.72 58.37
BiDAF + Character Embeddings 63.64 60.29
BiDAF + Character Embeddings + GRU 61.10 57.57
BiDAF + Self-Attention 61.12 58.24
BiDAF + Character Embeddings + Self-Attention 62.43 58.42
QANet 52.19 52.19

Table 1: EM and F1 scores for 6 models we experimented with on the dev set.

After our explorations with character embeddings, self-attention, and QANet, we found that our
BiDAF model with added character embeddings optimized performance the most. It achieved F1 and
EM scores of 63.64 and 60.29 respectively on the dev set, and 63.24 and 59.81 on the test set, which
marked a notable increase from the given baseline model.

However, our QANet model seemed to plateau at EM and F1 scores of 52.19, which is less than what
the baseline BiDAF model achieved.

5 Analysis

The character embedding model optimized performance by conditioning on the internal structure of
words, improving the handling of out-of-vocabulary words as compared to word-level embeddings.

Unfortunately, adding self-attention did not improve performance beyond the baseline. This is likely
due to the limited nature of a single self-attention layer. In the future, we would like to explore more
attention mechanisms like co-attention (as outlined in the R-Net paper) to hopefully improve F1 and

EM scores.
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Figure 2: Tensorboard for BIDAF Model With Character Embeddings



Our QANet implementation also ran into some challenges as initially, our F1 and EM scores trained
down towards 0, while NLL continued to decrease towards 0 as well. After observing the outputs of
each of the layers in the Encoder Block, we noticed an error in the implementation of the position
encoder that all inputs are run through. This lead to incorrect high probabilities being predicted,
which lowered the NLL, but did not return the correct answer. After fixing the position encoder, our
F1 and EM scores plateaued to a linear value of 52.19, and the AvNA score plateaued at 52.14 (shown
in Figure 3). These trends occurred as the dev NLL was still decreasing, and train NLL was close to
0. After some investigation, we found that the model was predicting No Answer for all questions,
which led to this perplexing result. We experimented with LeakyRelu using a negative slope of 0.01
and 0.1, lower learning rates, a learning rate warmup, and dropout rate reductions, but were unable to
fix the model to achieve higher scores.
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Figure 3: Tensorboard for QANet Model With Character Embeddings

6 Conclusion

In this project, we explored the question answering task using the BIDAF and QANet models. First,
we implemented and improved the baseline BiDAF model with the addition of character embeddings
and a self-attention layer. Then, we re-implemented the QANet model, which unfortunately resulted
in plateauing scores. We trained these models on the SQuAD 2.0 dataset. According to our findings,
the modifications in the embedding layers led to the greatest impact.

In the future, we would like to explore other attention mechanisms such as co-attention to hopefully
optimize performance further.
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