
Incorporating Self-Attention and Character
Embeddings in a Question Answering System

Stanford CS224N Default Project

Melanie Mei Zhang
Department of Computer Science

Stanford University
melzh@stanford.edu

Abstract

In this project, I extend and improve upon a baseline contextual question-answering
BiDAF SQuAD model by using character-level embeddings, GRU encoding layers,
and context-to-context self-attention. The existing embedding layer is augmented
with the addition of character-level embeddings that are fed to a convolutional
layer, which allows the model to deal with out-of-vocabulary tokens and infer more
meaning from contexts and questions containing them. With the addition of a
self-matching attention layer that receives question-aware context representations
as input, the model is able to more effectively gather evidence from the entire
context to help determine the answer. In addition, the baseline encoder layers are
modified to use GRUs in place of LSTMs. The model is able to improve upon the
baseline substantially, achieving EM and F1 scores of X and Y respectively.

1 Key Information to include

• Mentor: Michihiro Yasunaga

• External Collaborators (if you have any): N/A

• Sharing project: No

2 Introduction

Question answering is a problem within NLP whose solutions allow users to formulate questions
using natural language and receive an informative response. This has applications in search engines,
personal assistants, and more. As an example of a question answering dataset, the SQuAD dataset [1]
consists of paragraph, question, and answer triples crowd-sourced using Amazon Mechanical Turk.
Each answer is a span of the paragraph text. This project aims to improve on a provided baseline
SQuAD model in the task of contexual question answering.

To improve upon the baseline, I make a number of modifications inspired by recent work and tech-
niques learned in class. This includes the addition of character-level embeddings to the model to use
alongside the existing word embeddings, which allows the model to better handle out-of-vocabulary
words, enabling more meaningful representation for contexts and questions that contain such words.
This also includes a context-to-context self-attention layer which refines the context representation by
incorporating information from the entire context in each context word representation. To improve
speed of iteration, I change the RNN of choice in the model encoder layers from LSTMs to GRUs.
These additions allow the model to improve upon the baseline substantially, bringing increases in EM
and F1 scores on the provided test and dev datasets.

Stanford CS224N Natural Language Processing with Deep Learning



3 Related Work

BiDAF (Bidirectional Attention Flow for Machine Comprehension) [2] is a SQuAD model that
utilizes a bi-directional attention flow mechanism to obtain a question-aware context representation.
In particular, the attention layer performs both question-to-context and context-to-question attention.
At the time (2016), the model achieved state-of-the-art results on the SQuAD dataset.

Self-attention is a paradigm that has seen great success in both RNN and Transformer [3] models; in
fact, it is a key building block of Transformers. R-NET [4] demonstrated incorporating Context-to-
Context self-attention on top of a BiDAF [2] model that landed first place on the score leaderboard at
the time of inception (2017).

Both BiDAF and R-NET utilize character embeddings, which I add to the baseline model in this
project. As done in the original R-NET model, the character embeddings are fed into a CNN layer
which produces a representation for each word in each sequence.

4 Approach

My final model is composed of the following layers in order:

Embedding Layer: This layer utilizes both word-level and character-level embeddings which are
provided in the baseline project code. The character-level embeddings are combined into a word-level
representation using a 2D CNN layer.

Encoder Layer: This layer uses a bi-directional GRU to produce a representation for each word in
both the context and question sequences.

Attention Layer: This layer utilizes bi-directional attention flow to produce a question-aware context
representation, unchanged from the baseline model.

Modeling Layer: This layer refines the question-aware context representations, using a bi-directional
GRU.

Self Attention Layer: This layer performs context-to-context self attention, producing new represen-
tations for each context word.

Modeling Layer 2: This layer refines the context-aware representations using a bi-directional GRU.

Output Layer: This layer produces start and end probabilities for each word in the context, unchanged
from the original model.

The specific changes I made to the baseline model are expounded in more detail below.

4.1 Character Embeddings

Using the character embeddings provided with the baseline model code, each word in a sequence is
split into its respective characters and embedded into vectors. Each sequence can be thought of as
an input signal with size (character embedding size, max sequence length, max word length). The
input is fed into a 2D convolutional layer, whose input channel size cin is the size of the character
embeddings and output channel size cout is the hidden size. The CNN utilizes a kernel of size (1, 5),
as done in the original BiDAF model [2]. The outputs are then max-pooled over the width to produce
a vector cembed of the desired hidden size for every word in the sequence.

This vector is concatenated with the corresponding word embedding wembed to arrive at the final
embedding [wembed, cembed] to be used as input to the model’s encoding layer. As a result, the size
of the hidden states of the revised model is double of that of the baseline.

4.2 Self Attention

I extend the baseline model by adding a Context-to-Context self-attention layer (and second modeling
layer) directly before the output layer. This entails directly matching the question-aware context
representation (produced by the preceding attention and modeling layer) against itself. The layer
does so by computing a similarity score between each pair of context hidden states:

Sij = wT [ci; cj ; ci ⊙ cj ] ∈ R

2



Figure 1: Model Architecture Diagram

where ⊙ is an elementwise product and ci is the ith context hidden state. These similarity scores form
a similarity matrix whose rows are softmaxed and used as weights to calculate a weighted average of
context hidden states for each context word.

This attention output is fed into another modeling layer, which is a bi-directional GRU. This modeling
layer serves as the final layer before the output layer.

5 Experiments

5.1 Data

I use the provided train, dev, and test sets from the default project, which are in part sourced from the
official SQuAD 2.0 training set. The inputs are (context, question) pairs and the outputs are answers,
which are spans from the context; in particular, three human-provided answers are given for each
question.

5.2 Evaluation method

I used the Gradescope leaderboard provided for the final project, which computes the EM and F1
scores for the provided test and dev sets. The EM score is a binary measure (i.e. true/false) of whether
the system output matches the ground truth answer exactly. The F1 score is the harmonic mean of

precision and recall. It can be expressed as 2∗precision∗recall
precision+recall .

3



The maximum of the F1 and EM scores across all three human-provided answers is taken when
evaluating on the dev and test sets.

5.3 Experimental details

I ran my experiments with identical training time as given by the baseline model code. For the final
model (character embeddings and self-attention), I used a learning rate of 0.5, dropout probability of
0.2, hidden layer size of 100, and batch size of 64.

I also experimented with an adaptive learning rate using PyTorch’s StepLR optimizer, as well as a
dropout probability of 0.5, but neither brought improvements to the EM or F1 scores in my testing.

5.4 Results

The final model with character embeddings and self-attention achieves EM score of 61.522 and F1
score of 64.799 on the test set.

The below table compares model performance in terms of E1 and F1 scores on the dev set.

Model Dev set EM Dev set F1
Baseline cell2 cell3

CharEmbed 60.309 63.756
CharEmbed + Self-Attention 63.452 66.861

Below are the Tensorboard graphs of train and dev NLL, as well as EM and F1 dev scores during
training. The orange line is the baseline model, the red line is the model with character embeddings,
and the blue line is the model with character embeddings and self attention.

4



6 Analysis

The model extended with character embeddings alone outperforms the baseline, and better handles
out-of-vocabulary tokens and punctuation tokens. As an example, the baseline model at times outputs
grammatically incorrect answers in terms of punctuation, as demonstrated in the example below:

The baseline model is able to identify the correct entity for the answer, but truncates too early and
removes the closing parentheses, which renders the answer grammatically incorrect. Both (a) the
model with added character embeddings and (b) the full model with character embeddings and self
attention correctly identify the answer. Given (a), it’s clear that adding the character embeddings
allows the model to have a better grasp over grammar and punctuation, preventing it from making the
same mistake as the baseline.

Below is an example in which the final model outperforms both the baseline and the character-
embeddings-only model:

Both the baseline and character-embeddings-only model produce the same answer of “militant",
which is somewhat correct, but not complete. In contrast, the final model produces the exact match
answer. It seems that the final model’s context-to-context self attention layer allows the model to
capture all of the leading descriptors for the word “group", since each context word is able to more
effectively pool information from the rest of the context in its representation.

Although the final model is able to more effectively encode information across the entire context, it
still seems to be easily “misled" by no-answer questions that refer to places, dates, or names in the
context but are phrased in a way such that the mention in the context does not answer the question.
The example below refers to the action “join" and the date “October 20, 1973" that are mentioned
verbatim in the context but have no relation to the entity “Nixon" mentioned in the question.

5



This suggests that the model relies too heavily on the appearance of key words/phrases without
taking the sentence structure (and its implications on the meaning) into account. To circumvent this
weakness, we could benefit from fine-tuning a pre-trained model whose parameters already have been
trained on a general language modeling task.

7 Conclusion

This project demonstrates the effectiveness of adding character-level embeddings and self-attention
incrementally to improve a baseline SQuAD question answering model. Each iteration of my model
improves upon the previous, speaking the power of each separate method. My model is able to
improve upon the baseline model, achieving EM and F1 scores of 61.522 and 64.799 respectively on
the test set.

Due to limitations in computing power (and specifically, limited Azure credits and the fact that this
was a single person project), I was not able to experiment with as much hyperparameter tuning as
I would have liked. Extensions for future work include using an adaptive learning rate optimizer,
testing more combinations of dropout probabilities and learning rates, and adding more encoder
layers and attention blocks to the model. Nevertheless, the improvements made upon the baseline
model are substantial and speak to the effectiveness of self-attention and character embeddings in the
task of contextual question answering.

References
[1] Konstantin Lopyrev Percy Liang Pranav Rajpurkar, Jian Zhang. Squad: 100,000+ questions

for machine comprehension of text. In Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2016.

[2] Ali Farhadi Hannaneh Hajishirzi Minjoon Seo, Aniruddha Kembhavi. Bidirectional attention
flow for machine comprehension. In International Conference on Learning Representations
(ICLR), 2017.

[3] Niki Parmar Jakob Uszkoreit Llion Jones Aidan N. Gomez Lukasz Kaiser Illia Polosukhin
Ashish Vaswani, Noam Shazeer. Attention is all you need. In Conference on Neural Information
Processing Systems (NIPS), 2017.

[4] Microsoft Research Asia Natural Language Computing Group. R-net: Machine reading com-
prehension with self-matching networks. In Association for Computational Linguistics (ACL),
2017.

6


	Key Information to include
	Introduction
	Related Work
	Approach
	Character Embeddings
	Self Attention

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion

