
Using Character Embedding and QANet to Improve
Perfomance on Question-Answering Task (SQuAD)

Stanford CS224N Default Project

Gurdeep Sullan, Takara Truong
Department of Computer Science

Stanford University
gksullan@stanford.edu, takaraet@stanford.edu

Abstract

Given a baseline model BiDAF without character embeddings, we aim to build
an NLP model that performs better than baseline. The two main approaches we
take are to (1) create a character level embedding and (2) build a QANet Model.
We perform an ablation study to understand how these model architecture features
influence performance. Results show that the model with QANet and character
embedding performs the best, with a score (evaluated on the test set) EM = 60.592,
F1 = 64.353. Further analysis compares context to query attention between the
baseline and the top performing models.

1 Key Information to include
• Mentor: Yian Zhang
• External Collaborators: N/A
• Sharing project: N/A

2 Introduction

While models such as BiDAF [1] show decent results on question-answer datasets like SQuAD, the
reliance on recurrent structures makes both training and inference slow. The slow and computa-
tionally expensive training time also makes a larger impact on the carbon footprint of these models.
Compounded, these issues prevent such models from being deployed in industry.

In this project, we aim to reduce both the computation time and carbon footprint while achieving
better performance than the BiDAF baseline on SQuAD [2]. Towards this end, we implement
two improvements: adding character level embeddings, and adapting the architecture to follow the
QA-Net model.

3 Related Work

RNN models have been shown to have good performance on the SQUAD dataset in the question-
answering task. As mentioned above, the BiDAF based RNN model is one such architecture. The
BiDAF model consists of an Embedding layer, an Encoder Layer, an Attention Layer, a Modeling
Layer, and an Output layer. The embedding layer takes input word indices and converts them into
word embeddings. The encoder and model layer use a recurrent structure, specifically a bi-directional
LSTM. The attention layer makes use of the bidirectional attention flow and calculates both context-
to-query attention and query-to-context attention. The final output layer takes the return of the model
layer and outputs start and stop location probabilities of the potential answer within the context.

There are papers which present extensions to the traditional RNN structure. For example, Zaman et al
have combined an RNN with a convolutional neural network to better preserve local information [3].

Stanford CS224N Natural Language Processing with Deep Learning



Another extension of the RNN model is the Query Reduction Network + RNN to specifically address
the issue of multi-hop question answering [4]. This is when question-answering specifically requires
the understanding of multiple facts within the context to answer the question. The structure of the
model is a single recurrent unit that is a variant of an RNN with an update gate which provides a local
sigmoid attention and a reducing function the reduces the query. The authors achieved a performance
of their model with an error rate of 9.9% on the bAbI QA dataset.

Transformer based models are capable of outperforming many RNN based networks by using self-
attention and positional encoding. Self-attention gives the model the ability to attend to all words
within a sequence, offsetting the drawbacks that RNN based encoders have, that is, the forgetting
of information over time. Additionally, RNN’s must process the sequence in order which retains
positional information but is not parallelizable . In contrast, attention based models encodes position
into the hidden states of the sequence so that the entire sequence can be processed at once, hence,
being parallelizable . The breakthrough of the transformer model, has led to recent successes such as
BERT [5] and GPT3 [6].

4 Approach

The first variant we implemented was the addition of character level embedding to our baseline
BiDAF model. The reason behind adding character embeddings was because as shown in previous
work [7] [1], including character embeddings improves reading comprehension and the BiDAF
model. To implement this, we loaded the randomly generated character vector embeddings, applied a
convolution, and concatenated the resultant character embeddings with the word embeddings. We
then passed this concatenated result through a linear layer to reduce the new hidden dimension size
from 2 * hidden_size to hidden_size, so that it was the proper shape for the next layer, the Highway
Encoder, and future layers.

The second variant we have implemented is the QANet model. This model takes advantage of the
fact that there is no RNN, making it more time-efficient due to parallelization. The drawback is that it
can be less memory-efficient. The general structure of the QANet model is an embedding layer, an
embedding encoder block, a context-query attention layer, a series of model encoder blocks, and a
final output layer. The key repeated structure here is the encoder block, which is comprised of a
positional encoder, a series of convolutional layers, a self attention layer, and a feedforward layer.
Additionally, there is a residual that is being kept track of between each of these pieces in the block,
as well as an applied layernorm. The general structure of the QANet is below [8]:

The encoder block structure first passes the input data through a position encoder, which is used to
provide information on where words are in the sequence. The formula for the positional encoding [9]
was calculated like so:

2



After positional encoding of the word+char embedding, a series of convolutions is applied which is
used to model local interactions, and then multiheaded attention is applied, which is used to model
global interactions [9]. As opposed to the single headed approach, the multiheaded approach is able
to filter and focus on different "edges"/"features" for each head, much like a filter in a CNN.

[9]

The final step of the encoder block is a simple feed forward layer, the result of which is passed to the
next layer, which is the context-query attention. Our model made use of the BiDAF attention that
was provided in the started code for the baseline for this layer.

After calculating context query attention, the model is passed through a stacked model encoder block.
We implemented this by initializing the same encoder block as above, stacked n=7 times. The inputs
were passed through this same stacked model encoder block three times. The final output layer
concatenated the three outputs of these three pass-thrus of the stacked encoder block to produce
output probabilities for start and end positions of the answer.

5 Experiments

To understand how model architecture features influence performance, we perform an ablation study.
To do so, we start with the baseline, BiDAf model, and incrementally add model changes. The
experiments that we run include the following: BiDAf, BiDAf + character embedding, QANet, and
character embedding + QANet.

5.1 Data

This project uses the SQuAD dataset [2], comprising of context-question-answering tasks. An
example is shown below:

3



Table 1: Model Performance

5.2 Evaluation method

We use three evaluation metrics: EM, F1, and the carbon footprint of training the model. Both EM
and F1 are standard metrics used to compare models on SQuAD. Estimations of carbon footprint
were conducted using the MachineLearning Impact calculator presented in [10].

5.3 Experimental details

The model and training configurations for QAnet will be presented in this section. We follow
the QAnet paper and use the ADAM optimizer with β1 = 0.8, β1 = 0.999 and ϵ = 10−7. For
regularization, we use dropout with a value of 0.1 in all layers except for the character embedding
which uses half this value. For the encoder block, the hidden size and number of convolution filters
are 100. The number of convolution layers in the embedding encoder and modeling encoder are the
same as the QAnet paper with 4 layers and 2 layers with kernel size 7 and 5, respectively. The block
numbers for the embedding encoder is 1, while the modeling encoder has 7.

5.4 Results

Results of the experiments show that the QANet has some improvement over the BiDAF model
as noted by a large increase in F1 score and a slight decrease in EM score, Table 1. Additionally,
character embedding improves both the BiDAF and QANet model significantly. From this experiment,
we find that the QANet + character embedding model has the best performance on the devset when
compared to other variants and use this model on the test set. The result of this model on the test set:
EM = 60.592, F1 = 64.353.

Looking at the carbon footprint of each architectural feature, we see that character embedding is a
more eco-friendly option than changing the architecture, Table 1. In perspective, the carbon footprint
of training QANet + character embedding is equivalent to driving an average car for 8.37 km or
burning about .97 kg of coal, compared to BiDAF with character embedding at 1.29 km or burning
0.19 kg of coal [10].

6 Analysis

We qualitatively examine how the model variants use attention for the context and query. Below are
heatmaps of Query to Context attention on an example datapoint for the baseline (BiDAF) and top
performing model (QANet + char embedding).

In Figure 1 is an example that contains part of a query: "In what country is Normandy located?", and
part of a context (zoomed in for ease of readability to a window of words containing the answer). For
both the baseline and the QANet + char embedding models, we can see the query word "country"
attends highly to "France", "Denmark", "Iceland" and "Norway" in the context. Additionally, we can
see the query word "Normandy" attends to the words "Normanni" and "Normandy". In this case,
"France" is the answer, and overall the BiDAF attention layer seems to capture meaningful attention
from the query to the context after word embedding and the encoding layers. However, we can see
from the heatmap that the QANet attention is better at focusing on the relevant terms, whereas in the
baseline model, the signal is slightly muted. We speculate this improvement in the QANet may be
due to extra processing and filtering done in the QANet encoder block to create more meaningful
word representations.

4

https://mlco2.github.io/impact#compute


Figure 1: Query 2 Context Attention

Below, we present some text examples of predictions made on the DEV dataset by both the worst
and best performing models from our ablation study. The first example is one of the baseline BiDAF
model correctly identifying the answer from the context. The second example is one of the baseline
BiDAF model incorrectly not finding the answer when there is one in the context.

In the positive example, we can see that the model correctly identifies the "1950’s" as the correct
answer (although, missing the "the"), which is presented in the later part of the context. However, in

5



the negative example, it was not able to find the answer, which is presented in the first line of the
context. One explanation for this incorrect prediction may be the relatively long sequence length
between the answer and the end of the sequence, which results in RNN memory loss over processing
of the information.

The next two examples are from the QANet + character embedding model; the first is an example of
correct prediction and the second is an example of incorrect prediction.

We can see that the QANet model in the "CD4" example is able to find the answer though most
of the text was highly technical. It may be possible that the character-level embedding provides
additional information at the sub-word level that allows it to learn how to answer this question that
has a non-traditional English word answer. Additionally, it is able to find the answer at the beginning
of a relatively long stretch of context, which the BiDAF baseline model was struggling to do. In the
negative example, we see that the prediction incorrectly returns "Huguon". One reason for this might
be the self-attention mechanism in the encoder block as well as the context-query attention, which
caused the model to attend to words similar to "Hugo". Additionally, this example had quite a bit of
non-English words in the context and answer, and it may be possible that the model just did not train
on enough examples with French words to learn a meaningful representation of the language.

7 Conclusion

Overall, we present character embedding and QANet as solutions to the question-answer task that give
decent improvements to the performance over the baseline model. Through the process of building
several elements of this model architecture from scratch, we gained a deeper understanding of NLP.
Specifically, we implemented the entire encoder block from scratch, including the multiheaded self-
attention. However, we did notice that performance improved with the use of the Pytorch multiheaded
attention module; thus this is a limitation of our current approach. Future work would be to optimize
our multi-headed attention to get performance on par with the PyTorch module.

We noticed that our performance in EM and F1 scores is somewhat below the paper implementation.
Future work to extend this model would be to apply the stochastic layer dropout as mentioned in the
paper to improve generalizability. Additionally, we could implement the context-query attention that
offered slightly better performance compared to the BiDAF attention used in our project.

6



References
[1] Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional

attention flow for machine comprehension. CoRR, abs/1611.01603, 2016.

[2] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable
questions for SQuAD. In Association for Computational Linguistics (ACL), 2018.

[3] M. M. Arefin Zaman and Sadia Zaman Mishu. Convolutional recurrent neural network for
question answering. In 2017 3rd International Conference on Electrical Information and
Communication Technology (EICT), pages 1–6, 2017.

[4] Min Joon Seo, Hannaneh Hajishirzi, and Ali Farhadi. Query-regression networks for machine
comprehension. CoRR, abs/1606.04582, 2016.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[7] Zhilin Yang, Bhuwan Dhingra, Ye Yuan, Junjie Hu, William W. Cohen, and Ruslan Salakhut-
dinov. Words or characters? fine-grained gating for reading comprehension. CoRR,
abs/1611.01724, 2016.

[8] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mohammad Norouzi,
and Quoc V. Le. Qanet: Combining local convolution with global self-attention for reading
comprehension. CoRR, abs/1804.09541, 2018.

[9] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

[10] Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres. Quantifying
the carbon emissions of machine learning. arXiv preprint arXiv:1910.09700, 2019.

A Appendix (optional)

If you wish, you can include an appendix, which should be part of the main PDF, and does not count
towards the 6-8 page limit. Appendices can be useful to supply extra details, examples, figures,
results, visualizations, etc., that you couldn’t fit into the main paper. However, your grader does not
have to read your appendix, and you should assume that you will be graded based on the content of
the main part of your paper only.

7


	Key Information to include
	Introduction
	Related Work
	Approach
	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion
	Appendix (optional)

