
Building a QA system (IID SQuAD track): BiDAF
with Answer Pointer

Stanford CS224N Default Project (IID SQuAD track)

Catherine Wang
Department of Computer Science

Stanford University
cyw339@stanford.edu

Abstract

Question answering is a central task in NLP that can be broadly used to evaluate
machine comprehension of natural language. Improvements in the question an-
swering task are helpful for improving general understanding of text, which has
a wide range of applications. This project investigates how character-level word
embeddings and Answer Pointer[1] can enhance the performance of a baseline
based on the BiDAF model. The addition of both character-level word embeddings
and Answer Pointer led to slightly worse performance than the baseline, which
highlights how many factors beyond model architecture can have a significant
effect on performance.

1 Key Information to include

• Mentor: Lucia Zheng

• External Collaborators (if you have any): None

• Sharing project: No

2 Introduction

The question answering task involves returning the correct answer given a question and a paragraph
of context. This simple framework actually provides a powerful way of measuring general machine
comprehension of text, since the given questions can range from straightforward factual recall (What
year did this occur?) to more complex inference (Why did this happen?) and be about anything.
Improving reading comprehension is important for useful applications like answering search queries
and summarization. The main idea behind the baseline Bidirectional Attention Flow (BiDAF) model
is to have both the context attend to the question and the question attend to the context so our context
representations are related to the question being asked [2]. Since the SQuAD dataset used for this
project has a particular characteristic where the answer is a section of text within the given paragraph,
it is a good situation to look to the Pointer Network architecture as an addition to our model. Pointer
Nets were developed to produce an output based on positions in the input, which is exactly what
SQuAD requires [3]. Instead of predicting the start and end positions of the output separately, we can
use the Answer Pointer architecture based on Pointer Nets to condition the end position on the start
position [2]. The original BiDAF model also included character-level word embeddings, which were
not implemented in the baseline model and can improve the handling of out-of-vocabulary words and
sub-word level meaning [2]. Surprisingly, the addition of character-level embeddings and Answer
Pointer did not improve upon the baseline in this project. These results motivate a discussion of how
model architecture is only one factor in neural network performance and what additional changes
might help.

Stanford CS224N Natural Language Processing with Deep Learning



3 Related Work

BiDAF [4]: The baseline for this project comes from the paper on Bidirectional Attention Flow,
which takes embeddings at the character, word, and contextual level and computes bidirectional
attention between the context and the query to find which positions in each are most relevant for the
other [4]. The model architecture was designed so that the output layer can easily be modified or
replaced [4], which further incentivizes the use of Answer Pointer as an addition.

Pointer Network [3]: The Answer Pointer architecture is based on Pointer Network, which is
tailored to the case where the output corresponds to positions within the input, and uses an attention
mechanism to produce a distribution over input positions as a way to select optimal output positions
[3]. The original Pointer Network works in a sequential way, where each element of the output is
selected from the input and the resulting output may not be a continuous span within the input [3].

Answer Pointer [1]: The inspiration for this project was the paper introducing Match-LSTM and
Answer Pointer. The paper experimented with two types of Answer Pointer. The sequence model
works in the same way as the original Pointer Network, whereas the boundary model only selects the
start and end positions and everything between the two is part of the answer, producing a continuous
span of text from the context [1]. The boundary model performed better[1] and is also better suited to
the SQuAD dataset, so this version was used in the project.

R-Net [5]: This paper also utilizes Answer Pointer as its output layer and actually provides a clearer
formulation of the Answer Pointer equations and a good example of how to integrate Answer Pointer
into a model.

4 Approach

The baseline model consists of an embedding layer using GloVE word embeddings, an encoder layer
for contextual-level embedding, the BiDAF attention layer, a modeling layer, and an output layer [2].
This project makes two modifications to the baseline.

Character-level embeddings: The character-level embedding implementation is based on the model
details described in the original BiDAF paper [4]. In order to maintain a hidden size H of 100, we
first modify the baseline projection step so the word level embeddings have dimensionality H/2.
Then we run randomly initialized character embeddings through a 2D convolution with H/2 output
channels and a kernel size of (1, 5). We concatenate the word and character-level embeddings, both of
dimensionality H/2, and feed the resulting embedding of dimensionality H to the Highway Network.

Answer Pointer: The Answer Pointer implementation for this project is based on the R-Net Answer
Pointer output layer [5]:

Given a question representation {uQ
t }mt=1 and a learnable weights parameter V Q

r , we use the attention
mechanism

sj = v⊤ tanh(WQ
u uQ

j +WQ
v V Q

r ) (1)

ai = exp(si)/

m∑
j=1

exp(sj) (2)

rQ =

m∑
i=1

aiu
Q
i (3)

to produce a distribution a over the question representation based on V Q
r and use it to obtain the

attention output rQ. v, WQ
u , WQ

v are learnable parameters–v is a vector and WQ
u and WQ

v are square
matrices, all with size H based on the hidden size.

Then we use rQ to attend to the context (passage) representation {hP
t }nt=1 and select the start position

p1.

s1j = v⊤ tanh(WP
h hP

j +WQ
r rQ) (4)

2



a1i = exp(s1i )/

m∑
j=1

exp(s1j ) (5)

p1 = argmax(a11, ..., a
1
n) (6)

c1 =

m∑
i=1

a1ih
P
i (7)

Next rQ and the attention output c1 are used as the initial hidden state and the input, respectively, to
an RNN that is run for one timestep to produce the new hidden state ha

1 . In the project implementation,
this is an LSTM cell.

ha
1 = RNN(rQ, c1) (8)

We use ha
1 to again attend to the context representation {hP

t }nt=1 to get the end position p2.

s2j = v⊤ tanh(WP
h hP

j +W a
hh

a
1) (9)

a2i = exp(s2i )/

m∑
j=1

exp(s2j ) (10)

p2 = argmax(a21, ..., a
2
n) (11)

5 Experiments

5.1 Data

This project uses the SQuAD 2.0 dataset, which has examples consisting of context paragraphs
from Wikipedia, questions, and answers which are sections of text from the context [2]. Half of the
questions are unanswerable, meaning the answers are not found within the given context [2]. The
inputs to the model are the indices of the context and question words corresponding to the word and
character-level embeddings and the start and end positions of the answer within the context. The
outputs are the start and end distributions over the context, which we can take the argmax of to find
the start and end positions of the answer.

5.2 Evaluation method

Performance on this project was measured using the EM and F1 scores as defined in the project
handout [2].

5.3 Experimental details

The following experiments were run:

• Baseline (hidden size: 100, learning rate: 0.5, dropout: 0.2, 30 epochs)
• Character-level embeddings (hidden size: 200, learning rate: 0.5, dropout: 0.2, 30 epochs)
• Character-level embeddings (hidden size: 100, learning rate: 0.5, dropout: 0.2, 28 epochs)

– The virtual machine crashed at 28 epochs, but finishing the 30 epochs of training
actually led to worse performance on the dev set, so we use the results from 28 epochs
of training for this experiment

• Character-level embeddings + Answer Pointer (hidden size: 100, learning rate: 0.5, dropout:
0.2, 30 epochs)

• Character-level embeddings + Answer Pointer (hidden size: 100, learning rate: 0.6, dropout:
0.5, 30 epochs)

• Character-level embeddings + Answer Pointer (hidden size: 100, learning rate: 0.6, dropout:
0.35, 30 epochs)

3



In the first character-level embeddings implementation, both the word and character-level embeddings
had dimensionality of hidden size H = 100, which led to a hidden size of 2H = 200 after
concatenation. The second configuration where both the word and character-level embeddings were
halved to fit the original hidden size H = 100 after concatenation worked much better and was used
for all other experiments. Attempts to improve the character-level embeddings + Answer Pointer
model by increasing the dropout probability (since the dev loss began increasing about halfway
through) and learning rate also did not lead to better performance, so the original dropout of 0.2 and
learning rate of 0.5 were used on the test set.

5.4 Results

Test Set
Model EM F1
Character Embeddings 57.633 61.137
Character Embeddings + Answer Pointer 56.839 60.431

Dev Set
Model EM F1
Baseline 58.998 62.182
Character Embeddings 58.343 61.365
Character Embeddings + Answer Pointer 57.856 61.242
Character Embeddings + Answer Pointer (lr: 0.6, dp: 0.5) 53.571 56.071
Character Embeddings + Answer Pointer (lr: 0.6, dp: 0.35) 54.966 58.227

As the table shows, none of the additions to the baseline model improved performance, with both
evaluation metrics decreasing with each addition. This is unexpected, because intuitively, both
character-level embeddings and Answer Pointer should provide more information to the model and
lead to better performance. Reasons for these results may include mistakes in the implementation,
the hyperparameters, or characteristics of the specific architectures used in the model. This illustrates
the difficulty of debugging neural networks, since it can be unclear where or even whether there is an
error within the implementation.

6 Analysis

Since the new model does not differ drastically in performance from the baseline model, it is expected
that the outputs of the two models will be similar. Here are some analyses of hypothesized differences
between the two models:

One hypothesis was that the Answer Pointer model may be biased towards predicting fewer N/As
compared to the baseline model. However, when comparing the baseline and Answer Pointer
predictions on the dev set, the baseline predicts 2,320 N/As and Answer Pointer predicts 2,299
N/As out of 5,951 predictions, which is fairly similar. However, it seems that quite often, different
questions are being predicted N/A by the Answer Pointer model and the baseline. On the dev set, the
baseline and Answer Pointer agree on predicting N/A for 1745 out of 5951 examples. But inspecting
a few samples where the two models don’t agree on an N/A prediction doesn’t seem to show any
pattern–both the baseline and Answer Pointer seem to be making similar kinds of mistakes when
incorrectly predicting an answer when the ground truth is N/A (which seems to be more common
than incorrectly predicting N/A for a ground truth answer), where a word or sequence of words in the
question is found in the context but does not lead to a correct answer.

4



Figure 1: Baseline (Answer Pointer correctly predicted N/A)

Figure 2: Answer Pointer (Baseline correctly predicted N/A)

It also appeared from visual inspection that Answer Pointer might be predicting shorter answers
on average than the baseline. From the dev set predictions, the average baseline answer is 11.715
characters and the average Answer Pointer answer is 11.591 characters, so this also seems to not be
the case.

Finally, it may just be the case that adding Answer Pointer to a model is not enough for significant
improvement. Both the R-Net and Match-LSTM papers that use Answer Pointer in their output layer
do not show ablation studies, so the bulk of their improvements may come from the other parts of
their model.

7 Conclusion

This project found that after implementing character-level embeddings and an Answer Pointer output
layer, model performance did not improve over the baseline, with no obvious differences when
comparing the outputs. In the event that mistakes in the implementation itself contributed to the
slightly worse performance, the project could have benefited from debugging techniques such as
using data subsets. More hyperparameter and configuration tuning with batch sizes or embedding
dimensions might also have helped.

References
[1] Shuohang Wang and Jing Jiang. Machine comprehension using match-lstm and answer pointer.

arXiv preprint arXiv:1608.07905, 2016.

[2] CS 224N. Cs 224n default final project: Building a qa system (iid squad track). 2022.

[3] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in neural
information processing systems, 28, 2015.

[4] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional
attention flow for machine comprehension. arXiv preprint arXiv:1611.01603, 2016.

[5] Natural Language Computing Group. R-net: Machine reading comprehension with self-matching
networks. May 2017.

5


	Key Information to include
	Introduction
	Related Work
	Approach
	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion

