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Abstract

Machine comprehension and question answering have been very popular over the
past few years in the natural language processing community. In this work, we
choose the SQUAD default project and we improve the baseline BIDAF model with
character level embedding. We also implement and improve the QANet [1]] model,
and explore both a lightweight model and a larger model with more parameters. In
addition, we also implement the Answer Pointer model proposed by the work [2]
and replace the regular output layers in both BiDAF and QANet with our specially
designed Answer Pointer output layer, and perform experiments on the SQuAD 2.0
dataset. We observe that the large QANet with character embedding and Answer
Pointer achieve the best results with 68.29 F1 score and 64.98 EM score on the
development dataset, and 64.87 F1 score and 61.32 EM score on the test dataset.
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2 Introduction

Machine comprehension and question answering have been very popular over the past few years in
the natural language processing community. A lot of research work tries to find the best way for
computers to understand a given context and output the correct answers to corresponding questions.
Traditionally researchers tended to use lots of human-crafted features and relied on NLP pipelines
that involve multiple steps of linguistic analysis and feature engineering, including syntactic parsing,
named entity recognition, question classification, and semantic parsing. Recently, with the advances
of deep learning, there has been much progress in building end-to-end neural architectures for various
NLP tasks [3] [4] [S]]. Specifically, with the help of emerging high-performance GPUs, deep learning
methods, such as Birectional Attention Flow (BiDAF) [4], QANet [1], and Match-LSTM [2]], have
been very successful in the area of machine comprehension. In addition, the emergence of SQUAD 2.0
[6]], a crowd-sourced version of SQuUAD 1.0, further expedite the research of machine comprehension.
Since the SQuAD 2.0 were created by humans through crowdsourcing, it makes the dataset more
realistic with the addition of adversarial no-answer questions.

In this work, we choose the SQUAD default project and we improve the baseline BIDAF model
with character level embedding. We also implement and improve the QANet [1]] model, and explore
both a lightweight model and a larger model with more parameters. In addition, we also implement
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the Answer Pointer model proposed by the work [2] on SQuAD dataset. We replace the regular
output layers in both BiDAF and QANet with our specially designed Answer Pointer output layer,
and perform experiments on the SQuAD 2.0 dataset.

3 Related Work

There have been a number of studies proposing end-to-end neural network models for machine
comprehension. Specifically, there are two main promising methods for the machine comprehension
and question answering: RNN-based neural network and transformer-like neural network.

The first common approach is to use recurrent neural networks (RNNs) to process the given text
and the question in order to predict or generate the answers. For example, the work [7] tries to
process large amount of information using uni-directional RNN network structure. Later works also
explore the attention mechanism used on top of RNNs in order to match the question with the given
passagel[8] [9] [10]. Recent works also explore other model structure and modification. For example,
the Bi-Directional Attention Flow (BIDAF) network [4] propose a multi-stage hierarchical process
and use bi-directional attention. The work [2]] proposed to combine match-LSTM with the Answer
Pointer layer, which selects the end conditioned on the start.

One big disadvantage of RNN-like structure is that it is very slow for large model [1]. In the contrast,
for transformer-like neural network, they instead exclusively use convolutions and self-attentions as
the building blocks of encoders that separately encodes the query and context. The QANet model[[11]
combined local interactions captured by convolution models and global interactions captured by self-
attention models. However, one disadvantage of Transformer models is that they have fixed-length
context in the setting of language modeling [9]. One improved version Transformer-XL [12]] solves
this problem by proposing a segment-level recurrence mechanism to learn long-distance dependencies
among words.

4 Approach

In our final project, we explore six main structures on top of the baseline BiDAF model. Specifically,
we explored BiDAF with Character Embedding, BiDAF with Character Embedding and Answer
Pointer, QANet with Character Embedding, and QANet with Character Embedding and Answer
Pointer, and a more complex QANet with Character Embedding and Answer Pointer. We adapt some
utility functions from the work [1]] and write the main structure of QANet model on our own. We
implement the character-level embedding, various versions of Answer Pointer from scratch.

4.1 Baseline

For baseline, we used the provided Bidirectional Attention Flow (BiDAF) model in the default final
project[4].

4.2 BiDAF with Character Embedding

Inspired by the the work [4]], we add the character-level embedding to the baseline model. Each
word in the context and question is mapped to a high dimensional vector space. Then, we feed this
embedding vector as an input to a 2-dimensional CNN network. Then, we apply a ReLU function and
a max-pooling layer over the output of the CNN network. We also apply a dropout layer with dropout
rate of 0.1 for both the word embedding and the character embedding. In the end, we concatenate the
character-level embedding vector with the word embedding vector.

4.3 BiDAF with Character Embedding and Answer Pointer

Inspired by work [2], we implemented the Answer Pointer for BiDAF. The purpose of the Answer
Pointer layer is to condition the probability of selecting a word as the end token by the probability
of selecting a word as the start token. For the Answer Pointer, it will generate two integer indexes
indicating the start and end positions of the selected tokens in the original passage. As shown in
equations below, the attention mechanism is used again to obtain an attention weight vector where



V, W4, b%, v and c are the parameters to be learned, i is the hidden vector of the answer-LSTM at
position ¢, and H is the concatenation of the hidden state from the attention layer and model layer.

Futart = tanh(VH" +b%)
Pstart = softmaz (v’ Fyyars + c)
he = LSTM (H pyrare, he_,)
Fona = tanh(VHT + Weh$ + b%)

Pend = softmax(vTFmd +c)

Figure 1 shows the overall model architecture for the BIDAF with character embedding and Answer
Pointer. In our work, we made some modification to the Answer Pointer in the original work [2].
First of all, we concatenate the outputs from the attention layer and the modeling layer and feed
them into a linear layer such that the new input hidden state context representations could keep the
information from different scales and distances: both the attention of words at earlier layers and the
hidden states from the latest layers. Another modification we made is to condition the probability of
choosing a word as the end token on both the probability of choosing start token and the hidden state
of start and end tokens. We observe that this modification works pretty well in our experiments, and
one reason may be that the probability of start token may lose some useful information about the
token itself, and complementing with hidden states of start and end token helps the model to better
learn the correlations between them.
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Figure 1: BiDAF with character embedding and answer pointer overall model architecture

4.4 QANet with Character Embedding

The second modification over the baseline is to explore the QANet [1]. The model structure of
QANet is shown in figure 2. QANet is very similar to Transformer, and it does not have any RNN
models. Its main component is called Encoder Block. The Encoder Block draws inspiration from the
Transformer. Both have positional encoding, residual connections, layer normalization, self-attention
sublayers, and feed-forward sublayers.

However, the Encoder Block differs from the Transformer in its use of stacked convolutional sublayers,
which use depthwise-separable convolution to capture local dependencies in the input sequence. As



shown in figure 2, the QANet is consisted of the following modules: positional encoder, depthwise
separable convolutions layer, self-attention layer, and feed-forward layer. The self-attention layer is
multi-head attention instead of single attention. Queries, keys and values are linearly projected and
then applied with scaled-dot product attention in parallel to get output values. The three result values
are further projected and then concatenated to get the final output.

We also use the same embedding layer as BiDAF embedding layer, where we concatenate word em-
bedding vector and character-level embedding vector after the dropout layers. After some parameter
tuning, we choose the character embedding hidden size 128 in QANet.
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Figure 2: QANet with character embedding overall model architecture

4.5 QANet with Character Embedding and Answer Pointer

As shown in figure 3, we also try to add the answer pointer on top of the QANet. However, from
our experiments, we observe that the LSTM structure in the original Answer Pointer [2] does not
work well for QANet since one of the main purpose of QANet is to stay away from the RNN
structure. Therefore, we made a modifciation to the Answer Pointer and change the LSTM layer to a
fully-connected layer. We could also use multi-layer neural network for this part but we find that the
overhead becomes very large.

We observe that our QANet with character-level embedding and answer pointer becomes quite large
to train. Therefore, we also explore two different version of the model: a lightweight version and a
large model.

S Experiments

5.1 Data

We used the Stanford Question Answering Dataset (SQuAD) 2.0 [6], which combines 100,000
questions in the old dataset, SQuAD. This dataset provides over 150,000 answerable and non-
answerable questions comprehension.
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Figure 3: QANet with character embedding and answer pointer overall model architecture

5.2 Evaluation Method

We used the official SQuAD evaluation metrics EM and F1 scores to evaluate the performance of our
model. We also used the AvNA (Answer vs. No Answer) which is a useful metric to measure the
classification accuracy of our model.

5.3 Experimental Details

For the experiments, we run six different models on the SQuAD 2.0 dataset: the BiDAF baseline
model, the BiDAF baseline model with character embedding, and the BiDAF baseline model with
character embedding and answer pointer, a light-weight QANet model v1 with character embedding,
the same light-weight QANet model v1 with character embedding and answer pointer, and a heavy-
weight QANet model v2 with character embedding and answer pointer.

We run 30 epoches for all six models, and the detailed configurations of them are shown in table 1.
hid is the number of hidden state, #enc-blk is the number of encoder blocks in each stacked encoder
blocks. #head is the number of head in the attention layer of each encoder block. #conv-emb is the
number of depthwise-separable convolution layers in the encoder block after char+word embedding.
#conv-mod is the number of depthwise-separable convolution layers in each encoder block of the
stacked encoder block after the context-query attention layer.

Model LR |batch|hid |#enc-blk|#head|#conv-emb|#conv-mod
BiDAF Baseline 0.5 | 64 [100] N/A N/A N/A N/A
BiDAF Baseline + Char Emb + AP| 0.5 | 64 [100] N/A N/A N/A N/A
BiDAF Baseline + Char Emb + AP| 0.5 | 64 |[100{ N/A N/A N/A N/A
QANet vl + Char Emb 0.001| 32 |64 4 4 3 3
QANet vl + Char Emb + AP |0.001] 32 | 64 4 4 3 3
QANet v2 + Char Emb + AP |0.001| 8 [128 7 8 4 2

Table 1: Model configurations



5.4 Results

Table 2 shows the performance of our six models. Figure 4 shows the AvNA accuracy, EM score, F1
score, and NLL loss our six models. The best performance we achieve is 68.29 F1 score and 64.98
EM score on the development dataset, and 64.87 F1 score and 61.32 EM score on the test dataset.
We achieve the results on the non-PCE leaderboard.

Model Dev F1 | Dev EM
BiDAF Baseline 58.26 55.05
BiDAF Baseline + Char Embedding 61.52 58.21
BiDAF Baseline + Char Embedding + Answer Pointer | 62.18 59.13
QANet vl + Char Embedding 61.69 58.01
QANet vl + Char Embedding + Answer Pointer 64.35 60.93
QANet v2 + Char Embedding + Answer Pointer 68.29 64.98

Table 2: Model Dev performances

54.1 BiDAF

From Table 2, we observe that the performances on F1 and EM metrics improve about 6% after
adding the character-level embedding layer to the baseline. The loss curve of the second model also
converges faster than the baseline. This is expected since the character embedding enables the model
to learn more sophisticated internal structure of words.

As shown table 2, we could observe that third model achieves about 7% improvement for both F1 and
EM scores over the baseline, yielding a better performance than the second model. The loss curve of
third model converges at a very similar rate as the second model. The result meets our expectation
that by introducing the selection of end token depending on the start token, we should reach a higher
performance.

Hence for BiDAF model, character embedding significantly improves the model performance, and
answer pointer also improves the model performance.

542 QANet

To compare the effectiveness of QANet versus BiDAF, we take a close look at the second and forth,
third and fifth model in table 2. Although each pair of models has distinct number of hidden layers,
batch size, and other configurations, each pair takes a similar amount of time to train, so we put them
on the same scale to compare. From the result in table 2 we observe that within each pair QANet has
a better performance than BiDAF. We confirm our observation from the training loss. Within each
pair, the loss curve of QANet model also converges faster than the BIDAF model.

Compare the forth and fifth model, we confirm our conclusion about the effectiveness of Answer
Pointer. Our QANet v1 with char embedding achieves 7% improvement for both F1 and EM scores
over the baseline, while our QANet v1 with char embedding and answer pointer achieves 10%
improvement for both F1 and EM scores over the baseline. The loss curve of fifth model converges
faster than the forth model. We conclude that answer pointer is more effective to QANet than BiDAF.

Compare the fifth and sixth model, our QANet v2 with char embedding and answer pointer achieves
17% improvement for both F1 and EM scores over the baseline, resulting the best performance of all
models. The loss curve of the sixth model converges the fastest among all models. Because QANet
v2 is a more complex model with more hidden layers and more stacked encoder blocks, it is expected
that QANet v2 would yield a better result than QANet v1. Hence, the trade-off is between model
complexity and model performance.

6 Analysis

6.1 Answer Length

As shown in the figure 5, we perform analysis on the length of the ground truth answer and its
relationship with the average length of predicted answer. We observe that the most of the questions in
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the dev dataset has ground truth answer with length 1. In general, the frequency drops very quickly
as the length of the ground truth answer increases. We could also see that the mean prediction length
is in general smaller than that of the ground truth. It is interesting to note that there is no consistent
trend of the prediction length as the ground truth length increases. In addition, we could also observe
that the mean prediction length is very close to that of the ground truth when the ground truth is short.
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Figure 5: Ground truth length analysis with the QANet v2 model



As shown in figure 6, we also observe a negative relationship between our model performance and
answer length. This similar phenomenon is also shown in previous studies ol which reported
diminishing model performance with increasing answer length.
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Figure 6: The EM and F1 scores of the the QANet v2 mode with increasing answer length.

6.2 Analysis on Selected Examples

When we looked at the outputs of our model on the dev dataset, we found that the model performs
very poorly on the question that contains several similar options that are deceptively wrong. For
example, as shown in figure 7, there are several places appeared in the contexts like Fort Caroline and
South Carolina which are confusingly close to the ground truth answer Parris Island. One potential
solution is to collect more data of this type from either real or artificial text so that the model could
distinguish similar words better.

Question: What present-day area was this settlement near?

Context: French Huguenots made two attempts to establish a haven in North America. In 1562, naval officer Jean Ribault led
an expedition that explored Florida and the present-day Southeastern U.S., and founded the outpost of Charlesfort on Parris
Island, South Carolina. The Wars of Religion precluded a return voyage, and the outpost was abandoned. In 1564, Ribault's
former lieutenant René Goulaine de Laudonniére launched a second voyage to build a colony; he established Fort Caroline in
what is now Jacksonville, Florida. War at home again precluded a resupply mission, and the colony struggled. In 1565 the
Spanish decided to enforce their claim to La Florida, and sent Pedro Menéndez de Avilés, who established the settlement of
St. Augustine near Fort Caroline. Menéndez' forces routed the French and executed most of the Protestant captives.

* Answer: Parris Island

Prediction: Fort Caroline

Figure 7: A specific question that is very challenging for the model

7 Conclusion and Future work

As a summary, we observe that adding Answer Pointer to BIDAF and QANet improves both the F1
and EM performance. The best performance we achieve is 68.29 F1 score and 64.98 EM score on the
development dataset, and 64.87 F1 score and 61.32 EM score on the test dataset. We also observe
that larger QANet performs better than smaller QANet. For future work, we would like to explore
Transformer-XL [[14] for longer-term dependencies since our model is poor at learning words that
are very far part. We could also Explore models with low memory use like Reformer [[13] since our
current model consumes lots of memory.
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