
Reproduce Simple QANet on SQuAD 2.0
Stanford CS224N {Default} Project

Zhengqi Zhu
Stanford Center for Performance Development

Stanford University
stevezhu@stanford.edu

Abstract

By the time QANet[1] paper was published, most end-to-end machine-reading
and question answering models are primarily based on recurrent neural networks
(RNNs) with attention. Due to the sequential nature of RNNs, these models are
often slow for both training and inference despite their success on accuracy and
reliability. This project reproduced a simple Q&A architecture called QANet.
The major innovation of this model is that its encoder consists exclusively of
convolution and self-attention, while recurrent networks are not required. On
SQuAD 2.0 dataset, reproduced QANet model achieved a 63.855 EM score and
67.675 F1 score on the dev set, which outperformed the given baseline model on
both EM and F1 scores with only half of the epoch number trained. However, since
the QANet model size is significantly larger than the baseline model, the training
time of each epoch is around 6x longer than the given baseline model.

1 Key Information to include
• Mentor: N/A
• External Collaborators (if you have any): N/A
• Sharing project: N/A

2 Introduction

Question Answering (QA) has been a hot topic in the natural language processing area for many
years, it aims to answer a question about a given context or document which are posed in natural
language. Given a context paragraph and a question, we would like to build a QA system that outputs
a contiguous span from the context paragraph that answers the question, or mark that the given
question is unanswerable.

Figure 1: Sample data of SQuAD 2.0

This task is interesting because QA systems have been widely used in many important applications
such as search engines, customer supports, and educational applications. However, there are

Stanford CS224N Natural Language Processing with Deep Learning



some difficulties with the system. Firstly, natural language is complex, and understanding the
meaning of a sentence needs to consider various factors. A word could represent multiple
meanings based on the subtle nuances of the context and a small change could lead to the
opposite meaning of a sentence. Secondly, the system not only needs to find the answer
from the given input, but it also needs to determine if the question is answerable. This asks
the system to develop a mechanism that could figure out none of the facts can be inferred as an answer.

QANet is one of the top-level performance models on SQuAD 1.0 and my motivation is to
explore its performance on SQuAD 2.0. Besides, there is a clear trend that more and more models
are attention-based. Since the major innovation of QANet is to exclusively use convolution and
self-attention in the encoder, without the recurrent nature, I chose QANet to re-implement an
attention-based model.

Our tasks are as follows:

• Reproduce the original QANet architecture from scratch using PyTorch.

• Make sure the re-implemented QANet model achieves a higher EM and F1 score compared
to the given baseline model.

• Explore extensions to the original architecture.

• Evaluate the performance of QANet on SQuAD 2.0 and analyze the limitations.

To explore the improvements on the original QANet architecture, I applied a mask on self-attention
to remove unnecessary attention and focus on the attention of the keywords. As a result, the QANet
model outperformed the given baseline model on both EM and F1 scores with only half of the epochs
trained.

3 Related Work

• Transformer[2] model deeply influenced QANet. Transformer model based solely on
attention mechanisms and achieved remarkable performance on translation task. QANet
chose to use convolution and self-attention mechanisms exclusively and abandoned the
recurrent mechanism entirely. Without the recurrent nature, the QANet model reached a 3x
to 13x faster training time compared to the state-of-art recurrent models by the time the
paper was published.

• Bi-Directional Attention Flow (BiDAF) network[3] introduced a multi-stage hierarchical
process that represents the context at different levels of granularity and the attention not
only flow from question to the context, but also flow from the context to the question, which
builds question-aware representations of the context without early summarization. This
model is also our baseline model. My goal for this project is to re-implement a QANet
model that outperforms the BiDAF model.

• Dynamic Coattention Networks[4] (DCN) is also used in the original paper. In order to focus
on relevant parts of both the question and the context, the DCN first fuses co-dependent
representations of both. Then a dynamic pointing decoder iterates over potential answer
spans. This iterative procedure enables the model to recover from initial local maxima
corresponding to incorrect answers.

4 Approach

• Baseline:

According to the default project handout, the baseline model is based on Bidirec-
tional Attention Flow (BiDAF)[3], except the baseline model does not include a
character-level embedding layer. The model contains an embedding layer, an encoder layer,
an attention layer, a modeling layer and an output layer. After setting up, training, and
testing on the dev set, I got an EM score of 56.02 and an F1 score of 59.57.

2



• QANet:

Similar to the baseline model and most of existing models, QANet model contains
five major components: an input embedding layer, an embedding encoder layer, a
context-query attention layer, a model encoder layer and an output layer. The major
difference between QANet and other methods is that QANet discarded RNNs and only use
convolutional and self-attention mechanism for both embedding and modeling encoders.

Figure 2: QANet Model architecture

1. Input Embedding Layer:

The embedding of each word w is obtained by concatenating its word embedding
and character embedding. The word embedding is fixed during training and initialized from
the p1 = 300 dimensional pre-trained GloVe [5] word vectors. All the out-of-vocabulary
words are mapped to an <UNK> token, whose embedding is trainable with random
initialization. To obtain the character embedding, each character is represented as a trainable
vector of p2 = 200 dimension. The word length is truncated or padded to 16. The output
from this layer of a word x is [xw;xc] ∈ Rp1+p2 , xw is the word embedding and xc is the
convolution output of character embedding of x.

2. Embedding Encoder Layer:

The structure of encoder layer is [n × convolution-layer + self-attention-layer +
feed-forward-layer]. The convolution-layer has kernel size of 7, d = 128 filters and the each
block has 3 convolution-layers. The self-attention-layer adopts the multi-head attention
mechanism[2]. The number of heads is 8. The total number of encoder blocks is 1. The
output of this layer is d = 128 dimensions.

3. Context-Query Attention Layer:

C denotes the encoded context and Q denotes the encoded query. First compute
the similarities between each pair of context and query words, rendering a similarity
matrixS ∈ Rn×m. Then apply softmax function to each row of S to get a matrix S̄. The
context-to-query attention is computed as

A = S̄ ·QT ∈ Rn×d

3



The similarity function used here is the trilinear function[3]:

f(q, c) = W0[q, c, q ⊙ c]

The query-to-context attention is computed as

B = S̄ · ¯̄ST · CT

where ¯̄S is column normalized matrix of S computed by softmax function.

4. Model Encoder Layer:

The input of this layer at each position is [c, a, c ⊙ a, c ⊙ b][3], where a and b are
respectively a row of attention matrix A and B. The number of convolution-layer is 2 and
total number of blocks are 5. Other parameters are the same as the Embedding Encoder
Layer.

5. Output Layer:

Each example in SQuAD is labeled with a span in the context containing the an-
swer. The probabilities of the starting and ending position are modeled as

p1 = softmax(W1[M0;M1])

p2 = softmax(W2[M0;M2])

where W1 and W2 are two trainable variables and M0, M1, M2 are the outputs of the
three model encoders from button to top. Compute the product of its start position and
end position probabilities to get the score. Finally, the objective function is defined as the
negative sum of the log probabilities of the predicted distributions indexed by true start and
end indices, averaged over all the training examples:

L(θ) = − 1

N

N∑
i

[log(p1y1
i
) + log(p2y2

i
)]

where y1i and y2i are respectively the ground truth starting and ending position of example i.
At inference time, the predicted span (s, e) is chosen such that p1sp

2
e is maximized and s < e.

• Extension:

I adopted the attention mask technique to help improve the model’s performance.
The motivation of the attention mask is that not all keys should be included in the attention.
Because in some cases, we will pad our queries for a practical purpose which doesn’t mean
these paddings have any relationships with our query. As a result, the attention score of the
correct position will decrease. Attention mask is a binary indicator of whether the indices in
the tensor are padded, so that model can ignore them.
The masked attention score is given by:

Scorenew = Mask · Scoreold + (1−Mask)×−1030

After applying the attention mask, the padding position of the dot product score is
masked with an extremely small value. Then in the following softmax operation,
these positions will receive a probability that is very close to 0, as the softmax func-
tion maps the value to [0, 1]. Therefore our correct position will have a higher attention score.

I apply attention mask on self-attention, context-query attention, and final output
layer. However, I utilize log softmax instead of regular softmax at the output layer. As the
loss function of the model is Negative Log-Likelihood which is given by:

l(x, y) =


∑N

n=1
1∑N

n=1 wyn

ln, reduction = mean

∑N
n=1 ln, reduction = sum

4



where ln = −wynxn,yn and wc = weight[c] · 1{c ̸= indexignored}

And from the formula, we know that our loss would be negative as ln is negative.
As we want our final output positive, we need to turn our input xn into negative. Hence we
choose the log softmax, which takes the logarithm of regular softmax and so the output
value of softmax would be negative, and the final output of our model would be positive.

5 Experiments

• Data:
As described in the default project handout, the dataset is SQuAD 2.0[6]. This dataset was
being pre-processed as given and split into three parts: train, dev, and test. The train and dev
sets are publicly avaliable and the test set is entirely secret. The train set contains 129,941
examples, the dev set contains 6078 examples, and the test set contains 5915 examples.

• Evaluation method:
As introduced in the default project handout, the evaluation metrics are EM and F1 scores,
and no-answer(AvNA) scores. Exact Match is a binary measure (i.e.true/false) of whether
the system output matches the ground truth answer exactly. F1 is a less strict metric –it is
the harmonic mean of precision and recall.

• Experimental details:
For hardware, I used Google CoLab NVIDIA Tesla P100 GPU with 16 GB memory. Due to
the limitation of GPU memory, I have to decrease the number of blocks of each encoder
layer.

– Baseline:The epoch number is set to 30 and batch size of 64. The training time is around
ten minutes per epoch. The learning rate is 0.5 as default, and the drop probability is
set to 0.2.

– QANet (first version): The epoch number is set to 30 and batch size of 32. But due to
Google CoLab auto-disconnect mechanism, the training was stopped at 7. The training
time is around one hour per epoch. The learning rate is 0.5 as default, and the drop
probability is set to 0.2.

– QANet (second version) + mask: The epoch number is set to 15 and batch size of 32.
The training time is around one hour per epoch. The learning rate is 0.5 as default, and
the drop probability is set to 0.2.

• Results:
The results of the performance of the Baseline model and implemented model are shown
below graph and table. Both the graph and the table are showing the results on the dev set.
In the Figure 3, the blue line represents the QANet model implemented from scratch and the
orange model represents the baseline model performance. It is clear to say that the QANet
model outperforms the baseline model. On the dev leaderboard, the QANet + mask model
got a 63.86 EM score and a 67.68 F1 score, whereas the baseline model has a 56.02 EM
score and 59.57 F1 score. One thing to notice is that I improved the QANet model after the
milestone so the improvement of the QANet + mask does not exclusively depend on the
mask mechanism.

On test leaderboard, QANet + mask model got 62.418 EM score and 65.749
F1 score.

Model EM F1 Loss AvNA Epochs
Baseline 56.02 59.57 3.30 63.54 30
QANet 57.08 60.42 2.58 68.68 7

QANet+mask 63.86 67.68 2.47 73.84 15

5



Figure 3: Result: Blue represents QANet and Orange represents the baseline

6 Analysis

• Dev/Test set score discrepancy:

One observation from the result is that the QANet has an EM/F1 score of 63.86/67.68 on the
dev set and 62.418/65.749 on the test set. Both scores on the test set are slightly lower than
on the dev set. One possible reason could be the model has an over-fitting problem. To solve
this, one possible way is to increase the drop probability value and another possible way is
to use data augmentation techniques. The original paper introduced a data augmentation
technique they used. Translate the original dataset to French and then translate it back. In
this way, the amount of data would be doubled. Their result with 3x data augmentation
increased around 1.5 on both EM/F1 scores. However, due to the limitation of time and I am
doing this project individually, I chose to not apply data augmentation techniques at this time.

• Training and inference time is slow:

The major goal of the original QANet paper was to discard the RNNs and make
the model train faster. They did get a remarkable training time improvement. However, in
my second version of QANet, the training time for each epoch is around 6x the baseline
model. Even though the model achieved higher EM/F1 scores than the baseline model
with only 15 epochs, which is half of the epochs trained in the baseline model, the overall
training time is 3x the baseline model. One reason is that the QANet model is more complex
and is significantly larger than the baseline model. As described in the experiment details, I
have to shrink the model size by reducing the number of blocks and number of layers in
order to make it run on the 16GB memory GPU. The model still occupied 14.58 GB of
memory after the shrinking. Another possible reason the training time is long is that the

6



Google CoLab is notoriously slow. I chose to use Google CoLab is because by the time I
started this project Azure was not available.

7 Conclusion

In conclusion, I successfully re-implemented QANet on SQuAD 2.0 and applied mask mechanism
on self-attention, context-query attention, and final output layer. The QANet achieved a strong
improvement compared to the given baseline model. It is my first time reproducing a paper and I
learned that some of the results and performance may not be able to be reproduced exactly. In this
project, QANet has both a higher EM/F1 score and slower training speed, although speeding is one
of the major achievements of the original paper. Except for the training time, the original model size
is reduced in this project due to GPU memory limitation.
One possible future work could be analyzing how QANet synergies with embedding from pre-trained
language models. Another possible future work could test our QANet on other Question Answering
datasets to see if the model has an over-fitting problem on SQuAD 2.0 dataset. Lastly, in this project,
I do not have enough time to do data augmentation as mentioned in the original paper. Since the
amount of data significantly influences the performance of a model, this task should also be included
in future work.

References
[1] Minh-Thang Luong Rui Zhao Kai Chen Mohammad Norouzi Adams Wei Yu, David Dohan

and Quoc V Le. Qanet: Combining local convolution with global self-attention for reading
comprehension. In International Conference on Learning Representations (ICLR), 2018.

[2] Niki Parmar-Jakob Uszkoreit Llion Jones Aidan N. Gomez Lukasz Kaiser Ashish Vaswani,
Noam Shazeer and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems 30 (NIPS), 2017.

[3] Ali Farhadi-Hannaneh Hajishirzi Minjoon Seo, Aniruddha Kembhavi. Bidirectional attention
flow for machine comprehension. In International Conference on Learning Representations
(ICLR), 2017.

[4] Richard Socher Caiming Xiong, Victor Zhong. Dynamic coattention networks for question
answering. In International Conference on Learning Representations (ICLR), 2017.

[5] Richard Socher Jeffrey Pennington and Christopher D. Manning. Glove: Global vectors for
word//w representation. in empirical methods in natural language processing (emnlp). In Associ-
ation for Computational Linguistics (ACL), 2014.

[6] Percy Liang Pranav Rajpurkar, Robin Jia. Know what you don’t know: Unanswerable questions
for squad. In Association for Computational Linguistics (ACL), 2018.

7


	Key Information to include
	Introduction
	Related Work
	Approach
	Experiments
	Analysis
	Conclusion

