
QANet for Reading Comprehension
Stanford CS224N Default Project: IID SQuAD

Reetika Agarwal
Stanford University

reetika@stanford.edu

Rohit Kulkarni
Stanford University

rohitnk@stanford.edu

Ravi Rajagopal
Stanford University

rravi77@stanford.edu

Abstract

In this project, we built a non-pre-trained model for Question Answering task for
SQuAD 2.0 dataset. Our primary contribution is a re-implementation of the original
QANet architecture which outperforms BiDAF model. In particular, we showed
that enriching input features by adding charcter-level embedding and other token
features such as Part-of-Speech, Named Entity Recognition and Term Frequency
can lead to significant improvements over the baseline architecture. We apply
these enhancements to both BiDAF and QANet to study the generalizability of
this approach. Additionally, we also study further extensions, such as modifying
the output layer and data augmentation. Finally, we take an ensemble of our best
performing models, which achieves a score of 72.5/69.9/77 F1/EM/AvNA score
on the dev set and 69.73/67.22 F1/EM on the test set.

1 Key Information to include

• Mentor: Allan Yang Zhou

2 Introduction

Reading Comprehension is a challenging NLP task. The model needs to develop an understanding
of the individual facts described in the context paragraph, distinguish between subtle nuances and
lexical ambiguities, and synthesize information to correctly answer a question, or determine that
the question is unanswerable. Given its difficulty, performance on Q&A tasks is commonly used to
evaluate the efficacy of novel end-to-end architectures in natural language processing. A system that
can read comprehension, and answer questions worded differently or distinguish tricky questions that
are unanswerable, can be treated as a proxy for understanding human "text".

In recent times, Q&A is dominated by large-scale pre-trained language models (PLMs), such as
ALBERT [1] and ELECTRA [2]. Even though PLMs have outperformed humans in the SQuAD
leaderboard, they offer little insights into further architectural improvements. For this project, we
choose non-PCE methods with a goal to implement architectural changes from scratch, explore model
extensions and analyze the flow of information through a network.

Amongst non-pre-trained methods, QANet [3] is a top performer on SQuAD 1.1 leaderboard. QANet
leverages recent trends in the field of NLP by combining multi-head self-attention as described in [4]
and with the context-query attention layer as in BIDAF [5]. In addition to re-implementing QANet,
we also explored modifications to the base architecture. We added character-level embedding in
conjunction with the word-level embedding to address morphemes, mis-spelled or out-of-vocabulary
words. For both models, we improve the semantic and structural representation of the context by
including part-of-speech (POS), name-entity recognition (NER) and normalized term-frequency
(NTF) tagging [6]. We also implemented data augmentation techniques, to identify the limits of the
model, specifically using machine translation from English to French, and synonym word replacement.
Our most notable improvements come from the QANet architecture, character embedding, and
tagging.

Stanford CS224N Natural Language Processing with Deep Learning

3 Related Work

The Bi-Directional Attention Flow (BIDAF) model performed better than the then start-of-the-art
when it was introduced in 2016. The success of the model relied on the enhancements to the Context-
to-query attention mechanism. The BIDAF model performed well against the SQUAD 1.0 Dataset
which had no unanswerable questions. However, with SQUAD 2.0, which contain unanswerable
questions, the model faced challenges. Also BIDAF uses RNN, which are inherently sequential.
This speed-bottleneck inhibits training on large-scale datasets and creates a ceiling on achievable
performance.

QANet proposes a new model based only on convolution to capture the local structure of the text,
as well as multi-headed self-attention to learn global interactions between pairs of words. This is
a transformer-basel model which achieves superior result compared to the sequential RNNs. The
model also used data augmentation to improve the accuracy against the SQUAD database.

Both BIDAF and QANet are closed, extractive and factoid answering model. Closed models rely on
a given context to answer the question. It is an extractive model because the answer is a sub string
of the context. It’s a fact-based which means that the model can only answer factual questions but
cannot provide any additional qualitative commentary.

DrQA (Document reader Question Answering) [6] extends the QA model to answer open domain
questions. It uses a search component based on bigram hashing and TF-IDF matching. DrQA
also uses feature engineering by adding manual tokens related to the context including POS, NER,
NTF and EM (exact-match) tokens. This model achieved impressive performance when tested with
Wikipedia as the knowledge source.

4 Approach

4.1 BiDAF

Baseline BiDAF is the baseline architecture [7] that consists of 5 layers:embedding layer, encoder
layer, attention layer, modeling layer and output layer. For brevity’s sake, the reader is referred to [5]
for a full description.

Character level embedding The input embedding layer of the BiDAF architecture uses a 300-D
pre-trained GloVE [8] word embedding. In addition to words, word-parts also carry meaningful
information in English, and this can be encoded through character-level embedding. Characters are
represented by 200-D learnable parameters. For each word, embedding for 16 characters are taken by
either padding or truncating words, and passed through a 1d-convolutional layer with kernel size 5 and
max-pooled along the word length dimension, to give a fixed size embedding xc for each word. The
final embedding is a concatenation of [xw,xc], where xw=300-D and xc=128-D in our experiments.
The resulting word representation is passed through a projection and 2-highway network [9]. A
highway network allows a fraction of the input to be transformed through a feed-forward network
and the remaining fraction to pass through the network un-transformed. Intuitively, this allows the
model to weight different parts of the encoding for different words.

We tried another novel approach to character embedding. Instead of using a stack of 1d-conv, ReLU,
and Max pool, we use 2 stacks of 1d-conv, ReLU and max pool to create a deeper conv-net. We saw
an improvement in character embedding when using two stacks of conv/pool layers instead of one.

4.2 QANet

Inspired by the current trend in NLP towards transformer-based models, we chose to implement
QANet, which has higher speed and accuracy over BiDAF. We utilize the baseline code for word
embedding, highway network, and context-to-query attention. The multi-headed causal attention is
adapted from Assignment 5. We have implemented encoder and the output layer from the original
paper, by utilizing open-source implementation of some standard blocks, such as sinusoidal positional
embedding and depth-wise separable convolutions.

Input embedding We used the same word+char input embedding as in BIDAF. Through experiments,
we observed that sharing the input embedding weights between the question and the context is very
important for good performance. This not only enriches the representation of both, but also preserves

2

the relationship between similar words in context and question, by transforming them similarly
through the input embedding layer.

Encoder The core improvement of QANet comes from the encoder layer. Due to the lack of
sequential information, the encoder uses sinusoidal positional encoding [4] with varying frequencies
to encode relative positions of words in a paragraph. This is followed by three types of sub-blocks:
several layers of depth-wise separable convolution, multi-head attention layer, and fully connected
layer. In order to easily train deep networks, each of these sub-blocks (one of conv/self-attention/ffn)
is wrapped inside residual block, and has layer normalization along the feature dimension [10]. For
the feed-forward net, we follow the Transformer structure, by using 2 feed-forward layers with ReLU
activation in the middle.

Figure 1: Both BiDAF and QANet has five main layers, main differences are in Encoder, Modeling
and Output layers.

The same structure is used for both the encoder (2nd) layer and the modeling (4th) layer of the QANet
architecture in Fig 1. For the 2nd layer, we use a single encoder block with 4 convolutions per block,
and a kernel size of 7. For the 4th layer, we use 3 stacks of 5 or 7 encoder blocks, with 2 convolutions
per block, and a kernel size of 5. We experiment with 1/4/8 heads for all multi-head attention layers.
Similar to [3], we share weights between context and query embedding encoder layer, and all 3 model
encoder layers.

Context-Query Attention This module is same as for both BiDAF and QANet model. We first
compute a trilinear similarity matrix [5] S between each pair of context and query words. We then
apply softmax along each row (along the query direction) to get matrix S̄. We use this to compute
context-to-query attention A = S̄.QT . Next, to include query-to-context question, we apply softmax
along each column (along the context direction) to get matrix ¯̄S. This is then multiplied by context and
transformed by S̄ to get query-to-context attention B = S̄. ¯̄ST .CT . The final output is [c, a, c ·a, c · b]
where c is the context, and a and b are a row of attention matrix A and B.

Output layer The output layer computes two vectors pstart and pend, which is the probability of
each position in the context being the start and end of the answer span respectively. If the output

3

of the three model encoder stacks are M0, M1 and M2, then, pstart = softmax(W0[M0,M1]) and
pend = softmax(W1[M0,M2]), where W0 and W1 are trainable weight matrices.

Inference Even though the pstart and pend are generated independently, they’re jointly used to
determine output at inference time. We maximize the probability of pstart(i).pend(j) subject to the
conditions i ≤ j and j − i+ 1 ≤ Lmax. Here, Lmax is the maximum allowed length of the answer
and is kept at 15. This last step is a sanity check, the end should be prior to the beginning, and the
answer shouldn’t be too long, to decrease the likelihood of picking wrong answers.

4.3 Further extensions

Token Features The dataset has many factual Q&A, such as related to person name, place, location
or time. Specifically tagging these features can improve the model’s ability to pin-point relevant
information. We use Python’s spacy library to generate POS and NER tags for tokenized words.
The spacy library supports 50 categories of POS (example- noun, punctuation, numeral, etc) and 26
categories of NER (example- person, org, work of art, date, etc). These are mapped to 16-D and 8-D
embedding respectively. We also concatenate normalized occurrence frequency for each word in
the context, resulting in a 453-D embedding for each word in the context. The question encoding is
simpler, we only have 428-D concatenation of word+char embedding.

Through experimentation, we observe that it’s important to share the input embedding weights and
highway-layer between the context and question. This way same words in the context and query
would have same embedding, keeping the one-to-one correspondence before attention is applied. In
order to share the weights, we try two original ideas. In the first experiment, we pad zeros to the
question encoding to match the dimension to context encoding (453-D). In the second experiment,
we also encode the question with POR, NER and NTF tags. They both show improved performance
over baseline with the first method being slightly superior.

Data Augmentation We tested different techniques for Augmenting both Questions and Paragraphs.
The first technique was applying back-translation using different languages in order to rephrase the
text and introduce diversity. We utilized several different languages: French, Chinese, Spanish, and
Hindi. We also utilized Synonym Replacement, where we replaced any word that is either a Noun,
Verb, Adjective, or Adverb with a 30% Probability.

Back-translation wasn’t always successful, as shown in Figure 2a and often resulted in loss of the
meaning of the original text. In order to fix this, we introduced some validation checks. The most
effective check was to compare the Named Entities in the Original Text vs the Augmented Text. If
any Named Entities were lost, we did not use the Translated Text. Figure 2b shows that once we
added this validation tests, the Back Translation was very effective in adding Variety to our input
Text.

Figure 2: Fig 2a(top) shows an example of back-translation without validation checks, Fig
2b(bottom) shows examples of back-translation with named entity validation checks

4

Output Layer Inspired by [11] and [12], we try two methods to condition the pend token on pstart.
Both methods are variants of the same underlying idea, we take the probability distribution of pstart,
multiply with its input, and concatenate it with the input layer to the end token. More specifically, the
below describes the two methods tried.

Method A :Xp1 = pstart · ([M0,M1])

Xp2 = [W1.[M0,M2]Xp1]

pend = softmax(W2.Xp2)

Method B :Xp2 = F.ReLU(W2.[M0,M2])

pend = softmax(W3.[Xp1Xp2])

Ensemble We ensemble multiple "weaker" models to build a "stronger model" with better accuracy.
We use two techniques for ensembling - average probability and majority voting. For average
probability, we iteratively load models, and take an average of the pstart, pend across all the models.
We use the averaged probabilities to determine the final answer. For majority voting, we look for
consensus amongst models and pick the most commonly-predicted answer. For breaking ties, we
give preference to the model with the highest score.

5 Experiments

5.1 Data

We used Stanford Question Answering Dataset SQuAD 2.0 [13] which includes unanswerable
questions. The dataset consists of triplets of context, query, and an answer which is a contiguous span
from the context. The training set consists of 130K examples, and the dev, test set consists of 6K
examples each.

5.2 Evaluation method

Three quantitative metrics are used for evaluation: EM, F1 and AvNA. EM (Exact Match) checks for
exact match. F1 is the harmonic mean of the precision and recall of the test value. AvNA scores the
accuracy of getting answer vs no-answer correct.

5.3 Experimental details

5.3.1 BiDAF Training details

BiDAF model was trained with a hidden size of 100, batch-size of 80, a constant learning rate of 0.5
with AdaDelta optimizer. A weight decay of 3e−7 and dropout of 0.2 was used to prevent over-fitting.
As in original BiDAF paper, we used EMA (exponentially-weighted moving average) of 0.999 to
improve predictability through ensembling which gives a gain of 1.4F1/EM scores. For including
character embedding and input tokens, we train BiDAF with same hyper-parameters for 30 epochs.

5.3.2 QANet Training details

We trained all QANet models for 30 epochs, with varying batch sizes between 40-96 depending
upon the model complexity, hidden size 128 and character dimension of either 64 or 200. For the
hyper-parameters, we followed the original QANet paper and used an Adam Optimizer [14] β1 = 0.8,
β2 = 0.999 and ϵ = 10−7. We used a learning rate warm-up scheme with an inverse exponential rise
from 0.0 to 0.001 in the first 100 steps, and then maintain a constant learning rate of 0.001 for the rest
of the training. Similar to BiDAF, EMA with decay rate 0.999 is applied to all trainable variables.

QANet has a tendency to overfit beyond 10-15 epochs, where the training loss decreases but the dev
loss starts to increase. To avoid over-fitting, we apply L2 regularization on all trainable parameters,
with λ = 3e − 7. We additionally use word dropout with pw = 0.1 and character dropout with
pc = 0.05. For the module layers, we apply dropout, with pL = 0.1, for every alternate conv layer,
attention layer, fully-connected layer, highway layer, and context-to-query attention layer. Drop-out
is also added in between every 2 model encoder stacks. Stochastic depth is often used to train

5

deep ConvNets, shortening the network during training, and using the full deep network during test
time [15]. Similar to the QANet paper, we also adopt this method (layer dropout) within each encoder
layer, where each sublayer l drops out with a probability of l

L (pL), where L in the last layer in the
encoder stack. We train the models on a Tesla V100 GPU, where it takes about 10-12 hours for 4M
steps.

5.3.3 Input token features

We pre-process training, dev and test set to include the token features- POS, NER and NTF for both
context and question. For a fair comparison, we train each of the BiDAF and QANet models, with
their respective hyper-parameters, with and without token features.

5.3.4 Data Augmentation

We tested several combinations of Questions and Paragraph Augmentations. A few examples are: all
questions augmented with several languages, paragraph augmented with French & Chinese, questions
augmented with synonyms and paragraphs augmented with French. We couldn’t combine too many
techniques, as the data-set would explode drastically.

Synonym replacement didn’t work very well. We used NLTK Wordnet Library to pick synonyms,
however, we noticed that these synonyms weren’t always very accurate. It was very hard to add some
sort of validation on the synonyms picked, thus the augmented data was not very reliable.

On the contrast, Language Back-translation worked extremely well in augmenting the data. It added
a lot of variety into the text. However, it took a very long time to prepare the data, especially with
all of the input token features. As data grew from 2x-4x with augmented data, it would take over 8
hours to extract all of the features for the new data set, which is comparable to the training time.

Our two best methods were augmenting questions with French, Chinese, Spanish, and Hindi, and
augmenting paragraphs with French.

5.4 Results

The table below show the results of all our experiments. Since we had limited submissions allowed
for test set, the table below reports performance on the development set.

Description F1 EM AvNA

Single models
BiDAF baseline 61.29 57.99 68.07
BiDAF char_emb 63.34 60.07 70.04
BiDAF char_emb, 3token_feat 66.09 62.70 72.26

QANet 5Conv, 1head, 96d_model, 64char_emb 66.02 62.51 72.93
QANet 5Conv, 4head, 128d_model, 64char_emb 67.32 63.64 73.90
QANet* 5Conv, 8head, 128d_model, 200char_emb 68.51 64.93 74.84
QANet 7Conv, 8head, 128d_model, 200char_emb 67.98 64.21 75.00

QANet** QANet*, 3token_feat, ques zero_pad 69.44 65.89 75.77
QANet QANet*, 3token_feat, ques 3token_feat 68.29 64.71 74.81

QANet QANet**, output layer Method A 68.37 64.86 74.71
QANet QANet**, output layer Method B 68.86 65.4 74.95

QANet QANet**, question augmented 66.99 64.38 72.81
QANet QANet**, paragraph augmented 67.97 64.39 74.79

Ensemble models
QANet ensemble average prediction 71.73 68.73 76.66
QANet ensemble majority voting 71.4 68.55 76.17

All models ensemble majority voting 72.5 69.9 77

6

Extending the baseline by adding character embedding improves the model by nearly +2.1/+3
F1/EM score. This is expected because even though the GloVe dictionary contains millions of tokens,
the model still encounters an OOV token fairly often. By running 1d-conv on groups of characters,
the model learns meaning of sub-words or groups of character, and infers more information about the
inputs.

QANet far outperforms BiDAF model, achieving 68.51/64.93 F1/EM scores. The results show
superiority of QANet architecture over BiDAF. We start with a simpler QANet model and gradually
add complexity to understand the relative importance of each element to the overall performance. We
see almost no benefit in increasing the model encoder stack from 5 to 7. On the contrary, increasing
the number of heads from 1 to 8, the hidden size from 96 to 128, and character embedding from 64-d
to 200-d, gives nearly +2.5F1 score. Qualitatively, we can infer two things from this observation: first,
the model prefers to "pay attention" to multiple segments of the context to better predict the answer
and second, the information flow bottleneck is along the hidden size dimension, not the vertical
direction.

We also observe that QANet tends to converge faster than BiDAF, at around 20 epochs. It is a bigger
model with many parameters and is prone to over-fitting, if continued to train for longer epochs.

The addition of token features extends the descriptive power of the inputs. Given the nature of the
tasks being factual Q&As, parts-of-speech and named-entity-recognition may be particularly useful
token features. For ex- BiDAF gets a huge gain of +2.75 F1 score just from token features.

The changes on the output layer did not show any noticeable improvement and in fact, slightly
degraded performance. We suspect that since QANet is a deep network, only changing the output
layer, without changing any of the preceding layers offers little gain. Further, part of the model
encoder output is shared between p_start and p_end and our methods break symmetry which might
adversely affect the accuracy.

Although the Language Back-Translation was successful in introducing a large variety into the
Data-Set, we didn’t see any big boost in the scores with data augmentation. We found that some of
the approaches provided a small increase in score (+0.1-0.3 F1 Score).

Lastly, we ran an ensemble of the models, which gave better prediction than any stand-alone model.
We compare the accuracy of average probability and majority-voting ensemble methods by running
both of them on the same five models. Average probability is superior as it uses the probability
distribution of pstart, pend and has more fine-grained information.

For the final test submission, we ensembled a total of 12 models including QANet and BiDAF and
achieved a score of 69.73/67.22 F1/EM. The difference in scores can be explained by shifts in data
distribution as well as ensembling based on the performance on the dev set.

6 Analysis

AvNA We observe that one of the weaknesses of the model is trying to guess an answer for the
questions with no answer, given the context paragraph. The dev set has more unanswerable questions
than answerable questions, however the models over-predicts answers. As shown in the confusion
matrix in Table 2, the model has 74%precision and 76.5% recall for answer vs no-answer.

Predicted
No Ans Ans Total

Ground truth No Ans 2370 773 3103
Ans 667 2181 2848

3037 2954

Table 1: Answer vs No Answer Confusion Matrix for the ensembled model on development set

Analysis on Question type To further study the model’s strengths and weaknesses, we classify
its performance on types of questions. For questions with more than one match, we pick the first
question word. Figure 3a shows that the F1 and EM scores of the best ensemble model. We see
that the performance declines when none of the conventional question words appear in the question,
as shown by the poor F1 score achieved in the "Other" category. Further, the model does better on

7

"Whose", "When" and "Who" questions which normally have an named-entity answer. It does poorly
on reasoning question such as "Why" or "How".

Next, we attempt to answer why input token features help. We plot the performance of a single
model QANet, with and without token features, in Figure 3b. As can be seen, the performance in
categories like "Which", "Whose", "When" and "How" improves with POS, NER and TF, whereas
the performance in "Other" category drops.

Figure 3: Fig 3a (Left): Performance of the ensemble model on different question types [Red/Orange:
F1/EM], Fig 3b (Right): Comparison of F1 score of a single model QANet with and without token
features [Red/Orange: No token features, with POS/NER/NTF]

Manual Error analysis We picked a handful of examples for manual error analysis. The first
two examples in Table 2 in the Appendix are instances of tricky questions. The models give a
closely-related but factually incorrect answer. For ex- context contains the phrase, "Normandy, a
region in France", question is "What is France a region of", and the model answers "Normandy". As
a second example, context contains the phrase, "The Norman dynasty had a major political, cultural
and military impact on medieval Europe’, the question is "What type of major impact did the Norman
dynasty have on modern Europe", and the model answers "political, cultural and military". Notice
the change in one word medieval to modern which confuses the model. These are hard examples, and
the model fails to distinguish between subtle change of words.

The second category of error is pattern matching. Here, the model learns that the answer to "who"
should be a person, "when" should be time, and "where" should be a place. It tries to look for the
specific entity in the paragraph without understanding the meaning of the text. The third example in
Table 2 shows for a question that begins with "When ..", the model answers "9th century" which is
the only time mentioned in the paragraph, even though it is incorrect.

7 Conclusion

In this project, we have implemented and explored popular Question-Answering models like BIDAF
and QANet. We have found ways to enrich the input representation by adding character embedding
and token features. While these methods were successful, other approaches such as data augmentation
and modifying the output layer did not yield much additive improvements.

Based on our experiments, it is clear that the transformer-like structure QANet is more superior to
BIDAF. Our best single-model result is 69.44/65.89 F1/EM score on the dev set. Our best ensemble
results are 72.5/69.9 F1/EM on the dev set and 69.73/67.22 F1/EM score on the hidden test set.

For future work, we would like to experiment with adding separate head for answer vs no-answer to
improve the model’s ability to differentiate between those cases. Another interesting areas of study
could be exploring Transformer-variants, such as Transformer XL and Reformer, and extending the
model for open domain question-answering.

8

References
[1] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu

Soricut. Albert: A lite bert for self-supervised learning of language representations. arXiv
preprint arXiv:1909.11942, 2019.

[2] Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. Electra: Pre-training
text encoders as discriminators rather than generators. arXiv preprint arXiv:2003.10555, 2020.

[3] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mohammad Norouzi,
and Quoc V Le. Qanet: Combining local convolution with global self-attention for reading
comprehension. arXiv preprint arXiv:1804.09541, 2018.

[4] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[5] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional
attention flow for machine comprehension. arXiv preprint arXiv:1611.01603, 2016.

[6] Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading wikipedia to answer
open-domain questions. arXiv preprint arXiv:1704.00051, 2017.

[7] CS224N. http://web.stanford.edu/class/cs224n/project/
default-final-project-handout-squad-track.pdf.

[8] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for
word representation. In Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), pages 1532–1543, 2014.

[9] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks. arXiv
preprint arXiv:1505.00387, 2015.

[10] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[11] Shuohang Wang and Jing Jiang. Machine comprehension using match-lstm and answer pointer.
arXiv preprint arXiv:1608.07905, 2016.

[12] CS224N Win 2021 Default Project. https://web.stanford.edu/class/archive/cs/
cs224n/cs224n.1214/reports/final_reports/report269.pdf.

[13] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable
questions for SQuAD. In Association for Computational Linguistics (ACL), 2018.

[14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[15] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with
stochastic depth. In European conference on computer vision, pages 646–661. Springer, 2016.

A Appendix

A.1 Attention analysis

We plot the heat-map of the context-to-query attention layer to analyze the interactions. Figure
2a shows an example of an attention map where the model predicts the correct answer. The word
"century" is mapped to "11th centuries", which is the part of the correct answer to the question. In
Figure 2b, the model predicts the wrong answer "Norse" instead of "Catholicism". The attention
heat-map provides some indication that the word religion in the question was mapped to the same
word in the context, and the model guessed the preceding word to the be answer. In general, we
notice the model tends to learn high-level patterns like word-matching between context and picking
the prior/after word as the probable answer.

9

http://web.stanford.edu/class/cs224n/project/default-final-project-handout-squad-track.pdf
http://web.stanford.edu/class/cs224n/project/default-final-project-handout-squad-track.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1214/reports/final_reports/report269.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1214/reports/final_reports/report269.pdf

Figure 4: a. shows an example with the attention is on the correct answer and b. shows an example
when the attention is on an incorrect answer on 2 samples picked from the development set

A.2 Training curves for selected models

Figure 5: Selected models in order of increasing F1 score : baseline(orange), baseline+ char_emb
(blue), baseline+char_emb+token_feat (pink), QANet(red), QANet+token_feat(blue)

A.3 Manual analysis of few incorrectly classified answers

10

Paragraph The Normans (Norman: Nourmands; French: Normands; Latin: Normanni) were the
people who in the 10th and 11th centuries gave their name to Normandy, a region
in France. They were descended from Norse ("Norman" comes from "Norseman")
raiders and pirates from Denmark, Iceland and Norway who, under their leader Rollo,
agreed to swear fealty to King Charles III of West Francia. Through generations of
assimilation and mixing with the native Frankish and Roman-Gaulish populations,
their descendants would gradually merge with the Carolingian-based cultures of
West Francia. The distinct cultural and ethnic identity of the Normans emerged
initially in the first half of the 10th century, and it continued to evolve over the
succeeding centuries.’

Question ’What is France a region of?

Gnd truth No answer

Answer Normandy

Paragraph The Norman dynasty had a major political, cultural and military impact on
medieval Europe and even the Near East. The Normans were famed for their
martial spirit and eventually for their Christian piety, becoming exponents of the
Catholic orthodoxy into which they assimilated. They adopted the Gallo-Romance
language of the Frankish land they settled, their dialect becoming known as Norman,
Normaund or Norman French, an important literary language. The Duchy of
Normandy, which they formed by treaty with the French crown, was a great fief
of medieval France, and under Richard I of Normandy was forged into a cohesive
and formidable principality in feudal tenure. The Normans are noted both for their
culture, such as their unique Romanesque architecture and musical traditions, and
for their significant military accomplishments and innovations. Norman adventurers
founded the Kingdom of Sicily under Roger II after conquering southern Italy on
the Saracens and Byzantines, and an expedition on behalf of their duke, William the
Conqueror, led to the Norman conquest of England at the Battle of Hastings in 1066.
Norman cultural and military influence spread from these new European centres to
the Crusader states of the Near East, where their prince Bohemond I founded the
Principality of Antioch in the Levant, to Scotland and Wales in Great Britain, to
Ireland, and to the coasts of north Africa and the Canary Islands.

Question What type of major impact did the Norman dynasty have on modern Europe?

Gnd truth No answer

Answer cultural and military

Paragraph The English name "Normans" comes from the French words Normans/Normanz,
plural of Normant, modern French normand, which is itself borrowed from Old Low
Franconian Nortmann "Northman" or directly from Old Norse Norðmaðr, Latinized
variously as Nortmannus, Normannus, or Nordmannus (recorded in Medieval Latin,
9th century) to mean "Norseman, Viking"

Question When was the French version of the word Norman first recorded?

Gnd truth No answer

Answer 9th century
Table 2: Manual Analysis of common mistakes made by the ensembled model on the development set

11

	Key Information to include
	Introduction
	Related Work
	Approach
	BiDAF
	QANet
	Further extensions

	Experiments
	Data
	Evaluation method
	Experimental details
	BiDAF Training details
	QANet Training details
	Input token features
	Data Augmentation

	Results

	Analysis
	Conclusion
	Appendix
	Attention analysis
	Training curves for selected models
	Manual analysis of few incorrectly classified answers

