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1 Abstract.

Machine comprehension on text is an important task in natural language processing. The publishing
of the Stanford Question Answering Dataset (SQuAD) has provided a large number of questions and
answers through crowdsourcing that allow for a common testing dataset for machine comprehension
models. I leverage strengths of existing models with various implementations by combining their
outputs in order to produce predictions that incorporate knowledge from all models. I find that naive
combinations of output layer decrease performance, but when combining the two models prior to
the final output component, both F1 and EM increase past either model on its own. Because of the
limitations of any particular model construction, and in particular choosing a single attention layer,
model combination appears to be a promising avenue for improving performance.

2 Background.

In the past few years, the problem of machine comprehension (MC) has gained much attention in
the NLP community. Due to the vast troves of data across the Internet, in libraries, and even on
particular sites such as Wikipedia, the task of automatically extracting information from text has
proven valuable. In fact, Google’s search function already leverages MC in their very popular feature.
In 2016, Rajprurkar et al. provided a dataset, SQuAD, with over 100,000 pairs of contexts and
questions answerable in the text [1]. With a highly competitive leaderboard, SQuAD provides an
opportunity for new methods of MC to be compared to earlier ones on a standardized metric, meaning
promising models on this dataset can be identified and applied to other areas where MC may be
useful.

Because of the popularity of SQuAD, it provides an opportunity to objectively compare the per-
formance of different MC models and layers. In particular, it means that the various techniques
and ablations attempted by researchers, many of whom have fairly similar architecture, can be near
effortlessly compared using the initiative’s evaluation statistics EM and F1.

One of the greatest challenges in producing a successful question-answering model is identifying the
most relevant words in the query and context. Conventionally, this process occurs primarily in an
attention layer, whose results are then passed through an LSTM to get span probabilities.

However, any one choice of attention leaves open the possibility that certain types of queries or
contexts are not amenable to that particular approach. To fix this, I train two models separately to
achieve a certain standard of performance and then take softmax output to create a joint prediction
that allows for efficient use of both models’ strengths.
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3 Related Work

The SQuAD dataset was introduced in 2016 by Rajpurkar et al. [1] as a common training and test
set that would allow a standard on which question answering models could be compared. This was
updated two years later with SQuAD 2.0 [2], which introduced unanswerable questions, which the
researchers found significantly decreased performance of models that were then highest performing
on the original SQuAD.

First, I introduce the model I use as a baseline, BiDAF, which was developed by Seo et al. [3]. Its
primary contributions to the broader task of question answering lie in its use of LSTMs surrounding
an attention layer, a format that has since been widely copied, and its titular bidirectional attention, in
which question and context words attend to each other via encoded representations.

Second, in 2018, researchers Zhong et al. released their Dynamic Coattention model [4]. This model
uses a similar LSTM-based structure to BiDAF, although it uses a revised attention layer. Similar to
BiDAF, the Coattention encoder considers each query word in light of the context words and each
context word in light of the query, which in this case takes the form of an affinity matrix. Then, after
some further processing, the output is passed through a Bi-LSTM, allowing it to recover from local
optima, which is particularly important in allowing the model to answer "N/A."

Importantly, because of the two models’ different attention layers, they will naturally develop certain
types of questions which they can answer with great reliability and others which they struggle with.
Rather than trying to revamp the entire structure to create a model with both strengths, I propose
combining the two somewhere after the attention layer so that both can have contributions to the final
output.

4 Approach.

5 BiDAF and Dynamic Coattention

For my experiments, I chose to draw on the BiDAF and Coattention models described earlier. I
chose these models because I believed their overall structural similarities would result in greater
compatibility, particularly in my experiment with a shared output layer. However, because they had
distinct attention layers, I assumed the strengths and weaknesses of the two models would be different,
meaning there would be opportunity for improvement if their knowledge was combined well.
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Above is a diagram displaying the layers of the BiDAF model. It uses both character and word
embeddings on the context and query that are then passed through an LSTM layer to produce the
attention input.

Of special relevance to this paper is BiDAF’s attention layer, which takes as input question hidden
states c1, . . . , cN ∈ Rh. and query hidden states q1, . . . , qM ∈ Rh. These are then used to compute a
similarity matrix S where

Sij = w⊤
sim[ci; qj ; ci ◦ qj ]

where brackets denote concatenation and ◦ denotes elementwise product. This similarity matrix is
the softmaxed in both directions to produce

Si,: = softmax(Si,:) ∈ RM , S:,j = softmax(S:,j) ∈ RN

for 1 ≤ i ≤ N and 1 ≤ j ≤ M .

These are used to produce

ai =

M∑
j=

Si,jqj ∈ Rh

bi =

N∑
j=1

SS
⊤
cj ∈ Rh

giving the context-to-question outputs ai and the question-to-context output bi. These are then used
to produce the attention layer output

gi = [ci; ai; ci ◦ ai; ci ◦ bi] ∈ R4h

for 1 ≤ i ≤ N , which are then passed into the final LSTMs to give the model output.

Similar to BiDAF attention, the Coattention attention layer uses question vectors qi corresponding
to words in the question and context vectors cj for words in the document. These are stacked into
matrices Q′ and C, where the rows of Q′ are the qi and the rows of C are the context vectors. Then
Q′ is passed through a linear layer with tanh nonlinearity to produce

Q = tanh(W (Q)Q′ + b(Q))

with trainable W (Q), b(Q). They are then multiplied to produce an affinity matrix L = C⊤Q which,
ideally, would correspond to weights dictating the likelihood a certain question word corresponds
with an answer word. These are then softmaxed in both directions to produce

AQ = softmax(L), AC = softmax(L⊤).

Then, the attention contexts for each question word are defined to be

CQ = CAQ

and the representation of the question and context together is

C∗ = [Q;CQ]AC

where the brackets represent a concatenation of matrices.

The rows of this matrix are then concatenated with the context encodings to make

[C;C∗]

and fed into another bidirectional LSTM to produce vectors ut which can then be used to select the
optimal span, mirroring the general process in the diagram for BiDAF.

5.1 Combined Model Approaches

My primary original contribution is the development of three types of combined models. The general
method for constructing a combined model is depicted below:
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At a high level, two models (in my case, BiDAF and Dynamic Coattention) are trained separately.
Then, their outputs are modified and that modified output is passed through a new layer that yields
predictions.

First Combined Output A standard SQuAD model’s output consists of probability vectors ps

and ps derived from a softmax that indicate the probability that the span including the answer to the
question starts and ends at psi and pei , respectively, for all context indices i. For this approach, I did
not modify the original output layer for either model. Thus, the input to the combined output layer is
ps1 and pe1 from the BiDAF model and ps2 and pe2 from Dynamic Coattention.

Then, I calculated

ps =
ps1 ◦ ps2

||ps1 ◦ ps2||
, pe =

pe1 ◦ pe2

||pe1 ◦ pe2||

to give the output of the whole model. In effect, I assumed the probabilities given by softmax were
independent and accurate representations of the actual probabilities given the model knowledge.

Second Combined Output Second, I anticipated the possibility that although a higher assigned
probability by a model corresponds to a greater likelihood that the span starts/ends at a given index,
the probability itself is not accurate. That is, it is possible that for a given model, when psi = 0.1,
there is actually a 5% chance the span starts at the location.

Suppose a model outputs a probability vector p ∈ Rn. Let i∗ ∈ {1, . . . , n} be the index of the correct
answer–that is, the actual starting index for ps or ending index for pe. I first calculated probabilities

am = P(i∗ = i|m ≤ pi < m+ 0.01)

for each m ∈ {0, 0.01, 0.02, . . . , 1} based on results from the SQuAD training set. This then gave a
lookup table from which I could get the actual probabilities implied by the softmax output. I then fed
these probabilities to the first combined output layer to get the final predictions.

Third Combined Output Finally, I attempted to combine the two models’ hidden layers imme-
diately prior to the output segment, meaning that the modified outputs in the diagram above were
effectively identity mappings. In their place, I concatenated the modeling layer outputs from the two
models and passed that through a linear layer and then a softmax. I designed it so that, should the
initial linear layer weight all components from one model as 0, it would be identical to the output
layer of the other model. This way, either of the models on their own would end up in the combined
model’s solution space, putting a strong lower bound on performance.
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6 Experiments.

6.1 Dataset and Evaluation Metrics

In this project, I am using the SQuAD 2.0 dataset [2]. Like the original SQuAD, it contains
over 100,000 questions to test MC using contexts found on Wikipedia and questions that were
crowdsourced and developed by humans. Unlike the original, it comes with the addition of over
50,000 unanswerable questions that the model correctly identify as such.

SQuAD has two official evaluation metrics: EM and F1. EM, standing for exact match, gives 100% if
the model returns one of the human-defined correct answers and 0% otherwise, making it very strict.
Meanwhile, F1 is the harmonic mean of precision and recall, making it more forgiving.

For each of my experiments, I used one BiDAF model and one Dynamic Coattention model. On both
models, I used versions with 100-dimensional encoded vectors trained for 2M iterations, with the
effect that they had similar performance and thus any additive effect would be most clear. (Dynamic
Coattention is capable of up to 66.2 EM and 75.1 F1 per its authors [4], but this requires larger hidden
layers and more iterations.) On the validation set, the BiDAF model achieved an EM of 56.38 and an
F1 of 55.97. Meanwhile, the Dynamic Coattention model used had an EM of 51.92 and an F1 of
55.17.

6.2 Experiment Details

In my first experiment, I implemented the models as described in the Approach section with no
training necessary. For the second experiment, I calculated the actual probabilities using a pass for
each model through the training set.

For the third experiment, I trained the combined model for 1.5M iterations on the default settings,
also allowing the parameters of the underlying models to train (perhaps allowing each to specialize
on certain questions).

6.3 Results

Model Dev EM Dev F1

BiDAF 56.66 59.98
Coattention 51.92 55.17

Exp 1 45.29 45.47
Exp 2 46.54 47.22
Exp 3 58.38 62.24

Additionally, Experiment 3 yielded an EM of 58.34 and an F1 of 62.01 on the test set.

7 Analysis

Surprisingly, neither of the first two experiments yielded a result that reached baseline performance. I
hypothesize this is because when one model misidentifies the start or end position, it overrides the
other. Specifically, I suspect that often, one model will assign very low weights to places where the
other assigns most of its weight. This means that the combined model is left to choose from many
low-probability options, most of which are irrelevant. The hypothesis is supported by the fact that
both models do frequently select irrelevant spans, a behavior not observed in either component model.

The third experiment, however, improved by several points upon both of its component models in
EM and F1, showing that the intent to combine strengths worked, at least to some degree. Further,
examination of its predictions show it is not prone to selecting random spans in the same manner as
each of the first two experiments.
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8 Conclusion

By combining two models of similar structure and performance, I was able to construct a third with
better performance than either component without introducing and dramatically different components.
However, doing so proved to be more difficult than anticipated, as naively multiplying together
the probability outputs instead amplified each model’s weaknesses. I have learned about several
approaches to the task of question-answering work and how, beyond quantitative metrics, high
performance on certain subsets of data can be exploited as seen in my third experiment. As a next
step, I hope to use less similar models to see if these trends still hold.
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