
With Such Friends, Who Needs Enemies?
Using A "Friendly" Question Type Discriminator For

Robust QA Training
Stanford CS224N Custom Project

Track: RobustQA

Filippos Nakas
Symbolic Systems MS Program

Stanford University
fnakas@stanford.edu

Abstract

Despite the proven benefits of domain adversarial learning in promoting the learning
of domain-invariant representations by QA transformer models, we hypothesize that
this addition might inadvertently also lead the model to become insensitive to the
question types of the input data. Our original proposal is to counteract this problem
with the incorporation of an additional "friendly" question type discriminator (QT
discriminator for short) that is trained to predict the training data’s question types
from the QA model’s hidden states. In contrast to domain adversarial training, our
QA model was initially meant to try and "help" instead of fool the QT discriminator
so that the latter would be forced to structure its representations more heavily around
the question type of its input. Our experimentation, however, showed that the
model shows the most significant OOD improvement over the baseline and vanilla
adversarial training when its objective is to merely force the QT discriminator to
make determinate predictions (vs random) without adding the restriction of them
being correct. Given this freedom during training, we discover to our great surprise
that the QA model often chooses to fool instead of help the QT discriminator by
using representations that the latter indeed confidently interprets as being associated
with a determinate question type - though not necessarily the correct one. In the
analysis, we provide a plausible explanation for why this improves robustness and
use it as justification to propose this method as a potentially generalizable tactic
of easily incorporating domain knowledge about what properties of the data are
robust into the in-domain training process. Finally, we acknowledge the limitations
of this work in fully evaluating the effectiveness and theoretical justification of this
new approach and point towards future work that could surpass these limitations.

1 Key Information to include

• TA mentor: Angelica Sun
• External collaborators, external mentors, sharing project: No

2 Introduction

A well-known problem even with state of the art QA models that can outperform humans in datasets
like SQUAD is that they fail to generalize well to performing QA on different domains that those they
were trained on. For large pre-trained models like BERT, this limitation is normally addressed with
some success with extensive fine-tuning on the test inputs of the out-of-domain test sets (in addition
to the in-domain fine-tuning) or even additional unsupervised pre-training on relevant domain data

Stanford CS224N Natural Language Processing with Deep Learning

[1]. However, this approach faces both practical and "philosophical" limitations. On the practical
side, additional pre-training can be computationally intensive on the good scenario in which there is
adequate data. Even worse, if the task in question is few-shot QA this approach is unavailable. On
the philosophical side, the need for additional pre-training casts serious doubt on the idea that the
parameters learned by the original model are accurate and generalizable representations of the deep
holistic structure of language.

Successful alternatives to these methods which depend on enriching the scale of either the data or
the model include using data augmentation and more powerful baseline models. The organizers
of the MRQA robustQA contest in 2019 [2], observe that, despite reaching state-of-the-art results,
most such approaches improve robustness to a degree roughly proportional to the increase in in-
domain performance. This suggests that these OOD performance improvements might be a natural
consequence of general performance improvement and are thus again not necessary indicative of
a independent increase in pure robustness, all things being equal. This point is possibly related to
the fact that a unifying feature of all aforementioned approaches is that the learning process in itself
remains fundamentally unchanged. Hence, a natural idea springing from these considerations is to
somehow explicitly incorporate the end of attaining robust representation of the input into objective
of the training process itself. Domain adversarial training is a characteristic realization of this idea.

The high level strategy is to add a feed-forward adversarial discriminator network that is simultane-
ously trained to read a part BERT’s final hidden layer in order to guess the domain of the encoded
input data. We then add a term in the QA model’s loss function that motivates it to “fool” the
adversarial network and make it unable to guess better than random. In being trained to additionally
minimize this quantity, the QA model is thus forced to learn hidden encoding representations that
are not recognizably linked to the properties of a particular domain, for that would indirectly also
provide information to the adversary that helps it guess correctly.

Figure 1: Distribution of Question Types for each dataset in the in-domain data)

But this might make us wonder: is all information that can help distinguish between domains harmful
to robustness? Clearly not. Although one can surely find other powerful examples, we concerned
ourselves with the data’s question types. We began with the observation that question types are not
similarly distributed for each dataset (see Figure 1). We then hypothesized that learning to leverage
the data’s question types is beneficial to the robustness of the model, because the relation of question
type and answer type is deeply connected to the task in a domain-invariant manner (this hypothesis
was confirmed by the experimental data; see Experiments section). The observation suggests that if
the model chooses representations based on the input’s question type, the adversarial model could use
their correlation to better predict the input’s domain. But since this opposes the adversarial objective,
domain adversarial training may be accidentally teaching the QA model to become question-type
“blind” (this was also confirmed by the experiments) and thus indirectly damage its robustness.

This led us to the idea of incorporating an additional "friendly" network whose purpose would be to
counteract only the deleterious effects of domain adversarial training. It’s architecture and input are
identical to that of the adversarial model with the only difference being that it would instead predict
the data’s question types and its objective should be somehow made to be aligned with that of the QA

2

model. We thus preliminarily used the negative of the analogous adversarial component loss (KL-
divergence with uniform distribution of empirical frequencies of the classes) which does not strictly
guarantee that the objectives of the QA and question discriminator are aligned, naively assuming that
this would naturally happen. But to our great surprise, given the freedom of "choosing" whether to
fool or help the QT, the gradient back-propagation leads the QA model to go unexpectedly often for
the latter. Even more unexpectedly, forcing the model to strictly help the question discriminator by
substituting the latter’s negative log likelihood loss for the negative KL divergence term, eliminates
all the observed jumps in performance. This bizarre result will be given a plausible interpretation in
the analysis section.

3 Related Work

This work builds on a long series of progressive developments in the use of adversarial training
from its birth as a tool for training generative models to its most recent application in various NLP
tasks. In the context of this paper, this progression culminates in the 2019 paper "Domain-agnostic
question-answering with adversarial training"[3] on which we rely heavily for both theoretical and
technical background. The original adversarial network architecture was devised in 2014 by Ian
Goodfellow and others [4] and was originally used as a method for creating generative models. Its
two main components are a generator network G that is somehow meant to learn the input distribution
and an adversarial network D that receives G’s outputs as input and tries to determine whether
the generated data come from the original distribution or not. G’s objective is now re-defined as
minimizing the success of D (i.e. maximising D’s loss function). By simultaneously training both
networks on their respective goals through back-propagation, G effectively learns how to generate
data that is indistinguishable from the input distribution. Following the success of this method, others
soon realized that it can also be used to improve the generalisability of neural network representations
used for non-generative tasks which involve data coming from different domains.

The main idea, introduced in 2015 [5] and tested primarily for image classification tasks, is to
organically incorporate the adversarial learning task to the original supervised learning task. Instead
of just focusing on optimizing the parameters to predict the correct labels, we penalize parameter
configurations that produce representations which allow an adversarial network to determine the
domain from which a particular input is coming from. As before, the adversarial network tries to
become a good discriminator and the classifier tunes its parameters so that - in addition to predicting
the correct labels - it fools the discriminator. This method is shown to increase out-of-domain
performance, the reason being that classifier is forced by the discriminator to learn representations
that fool the discriminator and are thus not speciously linked to properties of a particular domain. By
taking another step towards generalization researchers in 2017[6] observed increases in performance
by applying this method to the NLP task of dependence parsing by connecting the output of their
bidirectional-LTSM parser to a discriminator module. Finally, the 2019 paper that inspired this work
applies this architecture on top of BERT to enhance its training’s robustness to performance with
out-of-domain data, confirming once again that it can improve OOD performance.

A significant source of inspiration for coming up with the friendly component is the rationale behind
the seminal 1991 paper by Jacobs, Hinton et al.[7] called "Adaptive mixtures of local experts". In
this paper, the authors propose splitting up the learning task amongst a collection of local "expert"
models each of which ends up learning a different prediction strategy that suits a particular type of
input. The collective outputs of each expert are modulated by something like a stochastic gating
mechanism that determines which expert to call upon depending on its suitability. Prima facie, this
approach seems to represent the exact opposite training philosophy than that of adversarial learning:
it actively promotes building specialized representation for different domains of data. However,
this seeming opposition dissipates once one considers that different partitions of data may be better
suited to one of the two treatments depending on their relation to the objective of training. For
the purposes of performing robust QA on a dataset comprised of smaller datasets from different
sources, using a mixture of expert sub-models could be very hazardous in the likely scenario that the
experts end up specializing on the individual component datasets. If there was, however, some way
of "forcing" these experts to specialize in subsets of data which are defined by features that posses
a deep domain-invariant connection to the nature of task - case in point, question types for QA -,
specialization could end up being helpful. In light of this, the incorporation of the QT discriminator
into the training process can be viewed as an alternative way of producing am implicit mixture of

3

experts realized in this case as distinct "families" of representations exhibit by a single model’s
encoding hidden node value instantiations for different types of input. Although we chose to apply
this method for the particular purpose of correcting the potential deficiencies of domain adversarial
learning, an interesting future work would be to explore its use as a self-sufficient method that
purely competes with mixture-of-expert approaches. If it is proven to adequately induce positive
specialization, it has the added benefits of being relatively simple to implement on top of existing
architectures and fitting naturally with large neural models such as transformers.

4 Approach

Figure 2: Visualization we created to help understand the intricacies of the training process. The
forward pass follows the direction of the arrows for each of the three networks. Note that in the
forward pass, the paths through the discriminators are also part of the QA model’s path, as they
contribute to the calculation of its loss. Each of the backward pass follows the reverse direction,
with the added caveat that the discriminator parameters are only updated by the back-propagation of
their own loss function and not additionally from the QA’s loss even though they contribute to its
calculation.

As mentioned in the introduction, we rely heavily on the domain adversarial training implementation
described in the 2019 paper "Domain-agnostic question-answering with adversarial training"[3]. The
coding implementation is built on the starter code provided for robustQA track and, unless otherwise
stated, is our own with a few exceptions that we will describe now. Because the original paper gave
no description of the discriminators architecture, in just this particular case, we copied it almost
directly from the codebase https://github.com/seanie12/mrqa/blob/master/model.py. We also looked
at the code-base to make sure we had interpreted correctly the uniform distribution calculation in
the KL divergence loss as well as to determine whether the discriminator parameters are updated by
the QA model’s backward pass. Finally, to classify the questions we made small adaptations on the
following script written by Danilo Croce (https://github.com/crux82/AILC-lectures2021-lab) that
trains a DistillBERT classifier to distinguish 6 question types. We will now introduce the formalism.

The data used for the QA model are tuples (cli, q
l
i, y

l
i) denoting the ith context, question, span data-

point triplet in the lth training domain out of total of K training domains (K = 6 for the original

4

paper and K = 3 for ours. yli is itself a tuple of yli,s and yli,e denoting respectively the start and end
position of the gold standard answer span. The model’s purpose is to predict these two position for
each data-point, given the context and the question. The loss function uses standard negative log loss
across all domains:

LQA = − 1

N

K∑
k=1

Nk∑
i=1

[logPθ(y
k
i,s|cki , qki) + logPθ(y

k
i,e|cki , qki)]

In the original domain-adversarial training paper, in addition to minimizing this loss function, the
training must also fool a feed-forward Discriminator D (), which is fed some hidden state h from
within the BERT architecture containing some high-level representation of the context and query
(in this case, the hidden state of the [CPS] position). In our own approach, we additionally use
an identically structured feed-forward network that receives the same hidden state and attempts to
predict the question type of each data point. During training the domain "adversarial" and the QT
friendly discriminators train their parameter sets ϕ, and ω to respectively predict the domain-label l
and the question-label q of each data-point using h. In the original paper, the QA model must learn to
minimize its adversary’s success by minimizing the KL-divergence of its softmax predictions with
the uniform distribution over the domain relative data sizes (in essence, trying to make its best guess
to approach being random):

Ladv = − 1

N

K∑
k=1

Nk∑
i=1

KL(U(l)||logPϕ(l
k
i |hk

i))

,where KL is the KL-divergence and U(l) is the uniform distribution over the K classes based on their
empirical frequencies in the data.

In our new version, the QA model must additionally learn to maximize the friendly QT network’s
prediction certainty - though not necessarily, accuracy - by maximizing the KL-divergence of between
its prediction softmax over the data’s question types and the uniform distribution over the question
types, where M is the number of question types and qm is the mth question label:

Lfriend = − 1

N

M∑
m=1

N∑
i=1

KL(U(q)||logPω(q
m
i |hm

i))

The reason for which we use this objective instead of the discriminator’s NLL loss will be dealt with
extensively in the analysis section. These three loss functions will now be combined into one using
the hyper-parameters λadv and λfriend:

L = LQA + λadvLadv − λfriendLfriend

5 Experiments

5.1 Data

We are training the data on the three in-domain and three OOD datasets provided in the RobustQA
project and depending on whether we are doing in-domain training or secondary OOD fine-tuning,
we use their respective validation data-sets. The question classifier we borrow from the external script
is trained on the coarse grained-version (six classes) of the Question Classification dataset in English
(https://cogcomp.seas.upenn.edu/Data/QA/QC/)

5.2 Evaluation method

We use the standard EM and F-1 scores and compare our results against our own trained vanilla
and adversarial baselines, as well as the scores of the project’s development and test leaderboards.
Moreover, we evaluate the model both before and after a limited amount of fine-tuning to trace its
effect on performance.

5

5.3 Experimental details

In-Domain Training Due to time and resource contraints we could not afford to serisously experiment
with all hyperparameters and we thus chose to focus primarily to on those that bear a direct relevance
to the model architecture and were observed to lead in the greatest differences in performance in
preliminary tests. We decided not to experiment with the number of epochs, learning rate, batch size,
dropout rate and optimizer; they were set respectively to the standard values of 3e-05, 16, 0.1 and
AdamW (we also used same AdamW for the two discriminator networks). After including the two
networks, training on both Azure and Google Colab roughly doubled from 4 hours to 8-9 hours.

We experimented extensively with the two hyperparameters controlling the loss function an well as
the type of loss function used for the friendly component. A few experiments with each loss function
were sufficient to rule in favour of the negative KL divergence as opposed to the NLL. For pure
adversarial training we found the optimal value with lee(2019)[3] of 0.5 having tested two higher and
two lower values. For adversarial friendly training we first experiment with parameter pairs that were
either different or equal and quickly realized that the latter is better. Having then randomly chosen
0.3 on one of our first trials, we attained the best possible results and were not able to beat it by any
of the future trials using 0.2, 0.25, 0.35, 0.4 and 0.5.
Best in class for vanilla adversarial: λadv = 0.5, λfriend = 0
Best in class for adversarial-friendly: λadv = 0.3, λfriend = 0.3
Finally, we experiment with merging the "abbreviation" with the "description" question type and
rejected as it clearly worsened performance.

Out-Of-Domain Training

Since this part is orders of magnitude less expensive in time and computation we experimented with
almost all hyper-parameters and found little reason in changing them from the default. The general
rule was that optimal performance on the development set would be reached in less than ten epochs
(usually in the first five) and would gradually plateau to a slightly smaller value, showing gradual
increases and decreases thereafter. We thus settled at using the same batch size and learning rate
for the in-domain training and evaluated at every 100 batch iterations for 10 epochs. Note that this
fine-tuning step is performed using the vanilla training process of a QA model and does involve the
larger network.

5.4 Results

Figure 3: In-Domain Validation F-1 and EM are indistinguishable for all three types of training.

Figure 4: From left to right: Domain Discriminator Loss, Total QA Loss, Q-Type Discriminator Loss

6

Figure 5: Performance on Dev Set

Performance on Test Set: EM: 41.032 F1: 58.364

** Please see appendix for discrepancy between fine-tune baseline score here vs the poster.

6 Analysis

Adversarial training performs significantly worse than the baseline without extra fine-tuning on the
OOD data but improves significantly after OOD finetuning. This might be because the adversarial
objective obstructs the QA model from gaining specialized enough representations that are adequate
to the task but for the same reason allows greater flexibility for learning the new domain. The good
news is that, as we expected, the friendly component we added greatly succeeds in enhancing the
performance of pure adversarial learning for both one-shot and fine-tuning adjusted evaluation. This
boost acquires even greater significance in light of the fact that it is not accompanied by an increase
in in-domain performance, which is a safe indicator that the improved OOD performance is a pure
effect of increased robustness and not a side-effect of a more general improvement in the model.

However, as has been often hinted at in previous sections, the reason for this improvement proves to
be very surprising. We will gradually see why by analyzing the Q-Type Discriminator Loss graph on
the right of Figure 4. The blue and pink lines represent the friendly network’s loss throughout baseline
and adversarial training respectively, in both of which cases it plays no part in the training process.
Both of these lines behave in ways that confirm the two hypotheses we stated in the introduction.
First, the blue line’s descent shows that the baseline model naturally gravitates towards encoding
representations from which the QT discriminator can effectively decode the input’s question type.
Secondly, adding the adversarial objective forcefully disturbs this original tendency: the pink line
does not seem able to descend beyond a certain point. This happens because if the shared input of the
discriminators (final CLS hidden state of DistilBERT) allowed the friendly one to predict the question
type, the adversarial one could also use the same information to leverage the correlation between
domain and question type and thereby greatly improve its prediction success. So far, so good.

Things start to get interesting when we observe the behaviour of the orange line, which traces the loss
of QT discriminator once the maximization of its KL-divergence from uniform is also incorporated
in the objective of the QA model. Our expectation was that this would cause to the loss line to
cross the lower bound imposed by the adversarial objective, and somewhat increase its proximity to
the blue line. But we observe the exact opposite: the loss now seems to face an even higher lower
bound. Even more surprisingly, the line does not show any tendency to move downwards even in the
beginning. To understand what’s happening, recall that the QA’s added objective is to maximize the
KL divergence between the QT discriminator’s soft-max from the uniform distribution, i.e., using
an encoding representation that will lead the QT in making some determinate choice. Having the
freedom to maximize this objective by either leading the QT discriminator to predict correctly or
incorrectly, the QA model seems to consistently go by the latter for a certain fraction of times. This
means that the training leads the QA model to often represent the input of a question type A in
a way that the QT discriminator confidently interprets as being associated with a particular
different question type B - or at least with one amongst a small subset of different question
type(s).

As we mentioned in the previous section, forcing the QA model to strictly help the QT discriminator
by minimizing its NLL does not lead to increased robustness. The benefits in robustness must then
be understood as the result of affording - for certain training inputs - the QA model the freedom
to represent the input’s encoding in its hidden states in way that leads the two discriminators to
believe it has a different question type than its actual one. Observe that this is the only way in
which the QA model can satisfy both discriminator components of its loss function at the same
time, because whenever it instead opts for "helping" the friendly QT classifier, it inadvertently also

7

helps the adversary due to the Q-Type - domain correlation. In such cases, the benefit of being
able to satisfy both discriminator objectives in one go must be overcompensating for the cost of not
using the representation that most fits the actual question type of the input for the sake of pure QA
performance. This may be helping robustness in a somewhat analogous way to how adding dropout
helps ordinary training. The network becomes more flexible by allowing itself to cross-transfer
prediction strategies for different question types whenever that is not too costly. Given the
generally uneven distribution of question types in the training data (see Apendix), the QA model
benefits from leveraging question types with the added flexibility of also using what it has learned
from different question types whenever that is a good substitute - either because one question type
has fewer examples and is similar enough to one with more (say, using "human" question type
representations for "entity" type questions) or because certain examples get wrongly classified by the
imperfect question classifier we are using.

The relatively poorer performance of our best model in the test leader-board (lower half) compared to
the dev leader-board(top 20) can be attributed to a few different reasons. To begin with, more generally,
domain-adversarial training for QA does not have a history of achieving state of the art results for
robust QA [2] and, as explained in the introduction, is bested by techniques that simultaneously
also somewhat increase in-domain performance. The good news for our implementation is that
we achieved pure increases in OOD performance while actually slightly decreasing in-domain
performance, which brings us to the second point. Observing the overall higher scores in the test as
compared to the dev set, we suppose that the test data had a greater resemblance to the in-domain
data than the OOD used for development. Since the adversarial network is used to abstract from any
particularities in the in-domain data - which naturally worsens in-domain performance -, it is natural
to expect that it might be responsible for the underwhelming performance compared to methods that
do not try to completely abstract from the peculiarities of the training data. Moreover, we must take
into account that domain-adversarial training is probably not at its best when the in-domain has only
three data sub-domains (the original paper used six). Finally, we have limited sense of the accuracy
of the question classifier we are using. Although I manually checked that its performance is decent
for about 100 examples, the fact that it is being trained on less than 10.000 questions that are likely to
differ from our training data makes it certain that a non-negligible portion of of examples will be
wrongly classified. Using an improved question classifier will almost certainly improve performance.

7 Conclusion

We have confirmed the hypothesis that our new method significantly improves domain-adversarial
training for RobustQA. As hypothesized, forcing the QA model to build representations based
on the input’s question type increases robustness but in a different manner that what we initially
suspected. The improvement crucially depends on allowing the QA model the freedom to occasionally
"betray" the friendly network for certain kinds of input, by using representations corresponding to
the "wrong" question type. Although we have provided a reasonable hypothesis for this outcome,
we unfortunately did not have the time to inspect in detail the type of substitutions that are actually
performed and the conditions under which they happen; this analysis should be undertaken in future
work and will be crucial in adequately comprehending the characteristics and validity of the proposed
method. In addition, our work suffers from serious limitations related to the combination of having
limited computation and time resources while evaluating a training process that involves a large
number of crucial modelling choices that probably significantly affect the extremely complicated
interactions between the three networks. Given the notorious instability of adversarial training (made
exponentially worse by the inclusion of the friendly component), checking the results across a large
number of seeds is necessary to trust the results. It will also be important to check performance for
different numbers of domain and question classes and a more accurate question classifier.

If the methods proves its value under these circumstances, promising avenues of future work include
using a larger number of hidden states as discriminator input - possibly different for each and
with different degrees of overlap -, changing the discriminator architectures, and using the friendly
discriminator alone as a self-sufficient method. Finally, this method can be easily be adapted for
increasing robustness in other NLP and machine learning tasks by simply choosing a dataset partition
based on a feature(s) - maybe using more one friendly network- that is expected to posses intrinsically
deep and domain-invariant connections with the success of the task at hand. For example, the role
played by question type in QA could be played by proposition type in natural language inference.

8

References
[1] Swabha Swayamdipta Kyle Lo Iz Beltagy Doug Downey Noah A. Smith Suchin Gururangan,

Ana Marasović. Don’t stop pretraining: Adapt language models to domains and tasks. In ACL,
2020.

[2] Robin Jia Minjoon Seo Eunsol Choi Danqi Chen Adam Fisch, Alon Talmor. Mrqa 2019 shared
task: Evaluating generalization in reading comprehension. In EMNLP, 2019.

[3] Donggyu Kim Seanie Lee and Jangwon Park. Domain-agnostic question-answering with adver-
sarial training. In MRQA@EMNLP, 2019.

[4] Mehdi Mirza Bing Xu David Warde-Farley Sherjil Ozair Aaron Courville Yoshua Bengio
Ian Goodfellow, Jean Pouget-Abadie. Generative adversarial nets. In NIPS, 2014.

[5] Victor Lempitsky Yaroslav Ganin. Unsupervised domain adaptation by backpropagation. In
PMLR, 2015.

[6] Hiroshi Noji Yuji Matsumoto Motoki Sato, Hitoshi Manabe. Adversarial training for cross-
domain universal dependency parsing. In CoNLL, 2017.

[7] S. Nowlan R. Jacobs, Michael I. Jordan and Geoffrey E. Hinton. Adaptive mixtures of local
experts. In Neural Computation, 1991.

A Appendix

**Please note that the fine-tune baseline score presented in the experiment section is actually different
and clearly higher than that presented in the poster. I realized that I accidentally used the results of an
OOD fine-tune training trial that used different configuration parameters than those used for the other
two results. The qualitative analysis of the results thankfully remains the same.

Figure 6: Distribution of Question Types for all In-Domain data

Figure 7: Distribution of Question Types for all Out-Of-Domain data

9

	Key Information to include
	Introduction
	Related Work
	Approach
	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion
	Appendix

