What Complements Coattention

Stanford CS224N Default Project

Thomas Mayer and Olivia Weiner
Department of Computer Science
Stanford University
mayert@stanford.edu
oweiner@stanford.edu

Abstract

In this project, we aim to reproduce a coattention layer on the Stanford Question
Answering dataset (SQuAD) baseline model, and investigate its relationship with
other common SQuAD techniques. We start by testing how a coattention layer
improves the baseline model and find that when it is not paired with any other
techniques, it lowers performance. Next, we implement the Dynamic Decoder and
Highway Network, as well as Character Embeddings, and find that both increase
the performance of the coattention baseline, but still underperform the standard
baseline. In fact, the baseline only improves in the case where we use character
embeddings with the standard BiDirectional Attention Flow (BiDAF) layer and
single-pass decoder.

1 Key Information to include

¢ TA mentor: Ben Newman
¢ External collaborators (if no, indicate “No”’): No
¢ External mentor (if no, indicate “No”"): No

* Sharing project (if no, indicate “No”): No

2 Introduction

Question Answering systems query a large database of knowledge to construct and return answers to
input questions. The Stanford Question Answering Dataset (SQuAD) is unique in its large volume
and quality of data to train on. It also provides a Bi-directional Attention Flow (BiDAF) baseline
model that can be used to test other SQUAD techniques on. We train our model on SQuAD to output
the span in our context document in which the answer to our input questions lie.

Coattention was introduced to the SQuAD dataset in Caiming Xiong’s paper and found to
significantly improve upon the results of state of the art models when implemented together with a
dynamic pointing decoder to form a Dynamic Coattention Network (DCN). However, beyond this
implementation, there has not been a lot of research on the Coattention Network’s application to
Question Answering systems, and to our knowledge, there has not been an investigation into the
effect of coattention on a simple model, and how it interacts with other common QA techniques.
These questions are of importance as they can act as guidelines to whether coattention is a useful
technique on simpler models, and can act as an indicator to which techniques should be recommended
or avoided in conjunction with using coattention. Our report aims to investigate these questions.

The coattention layer is similar to BiDAF attention (used in the 2022 SQuAD IID track
baseline) in that it contains two-way attention between the question and the context. It differs in that

Stanford CS224N Natural Language Processing with Deep Learning



it also has a second-level attention computation which attends over the attention output representation.
This results in a more sophisticated and potentially expressive representation of each word in the
document. We elaborate on some distinguishing details of how the coattention layer is constructed
compared to BiDAF in the Approach section.

We implement the Coattention Network from scratch on the standard SQuAD baseline model and
use this as our second baseline. Next, we implement three other common SQuAD techniques to
investigate how they affect the coattention baseline compared to how they affect the standard baseline.
The first techniques we implement are the Dynamic Decoder and Highway Network. We choose
these because our reference paper by Caiming Xiong implemented their coattention layer alongside
these techniques and emphasised their combined importance in forming a Dynamic Coattention
Network. The other technique we implement is the use of character embeddings. We chose this
because it is a common and often successful question answering model technique, and it was advised
by our mentor Ben Newman.

We found in our experiments that implementing the coattention layer on our SQuAD base-
line model lowers performance across all metrics. The Dynamic Decoder improves the coattention
baseline but not the BiDAF baseline, although the DCN still falls short of the BiDAF baseline.
Character embeddings improve the baseline across all models, but had the biggest effect in the
BiDAF baseline.

3 Related Work

The idea of a coattention network was initially introduced for visual question-answering. Visual
question-answering is similar to the verbal question-answering used for SQuAD, except instead
of selecting a span of words within a document to answer a question, the model was trained to
highlight the relevant portions of an image in order to answer the question. In order to do this, a
novel coattention network was introduced, in which the attention calculation across the words in the
question and the attention calculation across the features in the image are computed in tandem, and
the computation of one impacts the computation of the other (Lu et al., 2017). At the time, attention
calculations had been computed solely on the image features, meaning that the key information
stored in the question was did not effect these computations.

This idea of coattention was further expanded upon and put to work in verbal question-
answering for the SQuAD dataset in the form of the Dynamic Coattention Network. The model
employs a coattention network early on, ultimately outputting a coattention embedding for each word
in the document, based on several calculations performed on both the question encodings and the
document encodings, including two similarity matrices with the softmax taken across the question
words in one, and across the document words in the other.

The primary innovation of the Dynamic Coattention Network was actually the Dynamic
Decoder. Previous models had generally used single-pass decoders, that is, decoders where a single
calculation was performed to predict the span of the answer. However, the Dynamic Coattention
Network used an iterative model, whereby at each step, the decoder uses an LSTM to keep track of
all the previous predictions made for the start word and the end word, and makes its new guess based
on the hidden state of the LSTM. This was said to avoid the pitfalls of previous models in which
they would get stuck at local maxima and be unable to move past them to find the globally optimal
start-end pair.

The model also combined two previous ideas: Highway Networks and Maxout Networks.
Highway Networks are networks in which early layers pass on their results not just to subsequent
layers but also directly to the final layers. Maxout Networks are networks in which a number of
calculations (a number referred to as the size of the maxout pool) are computed in parallel at each
layer, but only the maximum value achieved across the maxout pool is passed on. Due to their strong
empirical performance in previous experiments, for the Dynamic Coattention Network, they were
combined into a single Highway Maxout Network (HMN). The primary justification given for using
such a model is that there are a great variety of question-document pairs, and they may thus require a
number of different strategies to produce satisfactory answers. In this vain, the HMN allows the



model to try out many different strategies simultaneously and find which one produces the most
promising results overall (Xiong et al., 2018).

Additionally relevant to our implementation are character-level embeddings. Character em-
beddings have previously been implemented as a supplement to the Bi-Directional Attention Flow
(BiDAF) model, using a Convolutional Neural Network to achieve a character-level embedding for
the word vectors used alongside the pretrained GLoVE word vectors. This has achieved noteworthy
results in the past (Seo et al., 2018).

4 Approach

4.1 Baselines

As mentioned in our Introduction, we use two baselines in our project. The first is 2022 SQuAD IID
track provided starter code. The second is the same baseline with a coattention layer added that we
have implemented. The coattention layer was reproduced using the description in the conference
paper "Dynamic Coattention Networks for Question Answering" by Caiming Xiong. Our approach
will be to compare the effect of several common SQuAD techniques on the two baselines to investigate
which combination of features creates the highest relative improvement for the coattention vs standard
baseline. The SQuAD techniques we look into are the following: the Dynamic Decoder, which
includes a Highway Maxout Network, and character level embeddings. They were picked under
guidance of Stanford SQuAD handout recommendations.

4.2 Implementation

We start by implementing the coattention layer on our SQuAD baseline model to form our second
baseline. As mentioned, the coattention layer is similar to BiDAF attention (of our baseline) in that it
contains two-way attention between the question in context. Its main difference is that it contains a
second-level attention computation which attends over the attention output representation. Below, we
expand upon the noteworthy implementation details of adding this to our SQuAD baseline model.

Given question representation matrix [le, a:éQ, <., 28] € R™*2" and document representation matrix
[P, 2P ..., xP] € R™*2" we add a sentinel vector gg,cy € R?" to the end of the question and

document representation matrix respectively to form matrices [sc?, :z:?, ...,IS, qp] € Rntiz2h
and [zP 2D ... 2P cy] € R™1¥2h Here, h represents the size of the hidden layer, n, the
number of words in the question and m, the number of words in the document. The addition
of one extra vector allows our model to avoid attending to any particular word in the input.
Another noteworthy part of the coattention layer is that it adds a non-linear projection layer to the
question encoding. This allows for some variation between the document and question encod-

ing space. We apply the projection layer through the following equation: ij = tanh(Wgq;+b) € R?,
Following our coattention implementation, we implemented the Dynamic Decoder in ac-
cordance with the original implementation by Xiong et al. We feed into the decoder the
coattention encodings, C' € R?". At each iteration of the decoder, we start by concatenating
the coattention encodings corresponding to the previous start-word and end-word predictions,
Si—1,€;—1 into one vector [us, ,;Ue, ,| € R%h. We feed this, along with the previous hidden
state and cell state, h;_1,c;_1 € Rh, into an LSTM, which returns the next hidden and cell
states, h;, ¢;. As the standard, we set sg to be 0 and e to be the index of the last word in the document.

Then, for each index ¢ in the document, we compute a score for the start, ¢, € R and a
score for the end 5; € R. These are computed using two separate HMNs with the following
architecture, passing in the coattention encoding u; € R?" the current hidden state h; € R", and the
aforementioned coattention encodings us; ,,Ue; , € R2h:

r = tanh(Woylh; us,_,;Ue,_,]), 7 € RM W, € Rh>oh

my = max(Wi[ug;r] +b1), my € RY, Wy € RP*30 b ¢ RP*h
mo = maX(Wle + bg), mo € Rh,Wz S RthXh,bQ S Rth



HMN,,,; = max(Ws[mi;ms] + bs), HMN,,; € R, Wy € RP*"*2h p, ¢ Rpxh

Note that the use of ; denotes concatenation, and that p is the size of our maxout pool, with each use
of the maximum function taken across the first non-batch dimension. We can then take a softmax
across the scores for each index to generate a probability distribution for each word being the start
token and the end token.

Lastly, we implement character embeddings. This allows our model to condition on the
morphology of words in order to predict the meaning of out-of-volcabulary (OOV) words. GloVE
(which our SQuAD baseline model uses) assigns random vector values to OOV words. The character
embeddings, instead, find a vector representation of the OOV words by looking at their character
level compositions, which improves accuracy by reducing randomness in our predictions.

We implement character embeddings by implementing a randomly initialised vector for
each character index in our regular Embedding class. Next, we apply a dropout layer and 2D
Convolutional Neural Network to the embeddings. This helps us determine the vector representations
of words by looking at their character compositions, and extracting meaning from segments of a
word. We apply the max function over the width of these embeddings to ensure a fixed-size vector
for every word, and concatenate our resulting embeddings with our word embeddings. Next, we
continue as the BIDAF model does with its word embeddings by applying a linear projection layer
and highway network to our concatenated character and word embeddings.

Since all three of our implementations were implemented in different parts of our model
(the Attention class, Decoder class, and Embeddings class), it is easy to "turn" the techniques on and
off at different times, depending on the experiment we are running, without affecting the other parts.
We do this by using different git branches for the character embeddings, and by calling different
choices of attention and decoder classes into our model depending on the on the test.

5 Experiments

5.1 Data

We trained our model on a portion of the publicly available SQuAD training dataset. The dev set and
test set are non-overlapping subsets of the publicly available SQuAD evaluation dataset. These are all
elaborated on further in the default project handout.

5.2 [Evaluation method

We evaluated our test set on the test data, as described above and in the project handout, and the
specific metrics used are the negative log likelihood (NLL), F1 (the harmonic mean of precision and
recall), EM (rate of matching exactly the provided answer), and AvNA (rate of correctly predicting
whether there was an answer in the context or not). We compared these metrics following the same
implementation of techniques across the two different baselines.

5.3 Experimental details

We ran 8 different experiments. First, we ran our two baselines (SQuAD standard baseline, and
SQuAD standard with coattention baseline) on their own. Next, we ran three tests on each baseline:
one with the dynamic decoder and highway network, one with the dynamic decoder, highway
network and character embeddings, and one with only character level embeddings.

We also ran a few experiments varying the specifics of the dynamic decoder: specifically
the number of iterations for which the decoder ran and the computation of the loss function across
the different iterations.

We consistently used a learning rate of .5 and the batch size varied from 32 to 80 depend-
ing on the number of iterations we were running the decoder for and the associated memory
constraints.



5.4 Results

Attention Decoder Char Embeds. NLL F1 EM AvNA
BiDAF Standard No 3.06 61.54 58.16 68.31
Coattention Standard No 3.61 54.76 51.57 63.50
BiDAF Dynamic No 4.06 53.95 51.67 62.31
Coattention Dynamic No 3.69 53.65 50.36 61.40
BiDAF Standard Yes 3.02 63.65 60.39 69.58
Coattention Standard Yes 3.57 55.31 51.42 64.80
BiDAF Dynamic Yes 3.89 54.03 51.84 62.33
Coattention Dynamic Yes 3.48 57.25 54.06 64.59

Table 1: Numerical Results

Note: Each instance where it is indicated we use the dynamic decoder, we also use the highway
network. On the test leaderboard we submit our best performing model, which was BiDAF
with Character Embeddings. This obtained F1 score of 63.90 and EM score of 60.36 on the test
leaderboard.

Our results on models using coattention are worse than we expected. The fact that dynamic decoder
and highway network compliment coattention to improve performance was excpected, and the
positive effect across all models of character embeddings was not expected. This tells us that our
approach in having both a BiDAF baseline and a coattention baseline was useful, as it allowed us to
compare effects across baselines and see e.g. that the dynamic decoder only improves the baseline
when matched with coattention.

6 Analysis

We found considerable degradations in performance with both the coattention network and the
Dynamic Decoder. Our two best results came from BiDAF attention and the standard, single-pass
decoder, with considerable improvement using additional character embeddings instead of only the
pre-trained GLoVE vectors.

There are a number of possible explanations for this. One is access to resources. The pa-
per from which we borrowed our primary model recommended that the model run the decoder for 4
iterations before settling on its predictions for the span. However, with the resources that we had
access to, running the decoder for 4 iterations would have used up so much memory as to require
reducing the batch size to 8, which would require us to spend a full day each time we trained the
model, which would have simply unfeasible given the constraints of the project. This perhaps
indicates that coattention is more effective on larger-scale projects with more access to memory or
with more training time.

Additionally, the original published paper that first introduced coattention introduced as a
novel way to calculate attention between two separate vectors — in their case, between a feature
vector for the image and a vector of word representations. However, the baseline model we worked
from already utilized BiDAF, which also computes attention based on the relationships between
the words in the document and the words in the question, although it does so in fewer layers and
with a more simplistic model than the coattention calculations. Thus, coattention is less of a novel
improvement than it once was.

Perhaps the final reason we were not able to match their positive results with coattention
or with the Dynamic Decoder is the sheer number of factors that come into play, including
but not limited to: the learning rate, the choice of optimizer, the batch size, the number of



epochs, and the default start and end predictions initially fed into the LSTM. There are only so
many trials that can be run and so many tweaks that can be made, so it is possible that some
combination of the above parameters would have resulted in a successful improvement on the baseline.

In examining the effects of the other parameters, we see that coattention either improves or
maintains the performance of the dynamic decoder, while it majorly reduces the performance of the
standard single-pass decoder. This makes a lot of sense, as the dynamic decoder was designed to
work in tandem with a coattention layer, but the single-pass decoder was designed to take the BiDAF
as input. On the other hand, the dynamic decoder had a more neutral effect on coattention overall and
a distinctly negative impact on models that utilized BiDAF. As mentioned above, this is perhaps the
result of inoptimal parameters for the decoder, such as the number of passes or the default start and
end predictions.

The final result worth noting is that character embeddings were a consistent improvement
regardless of the combination of attention model and decoder, with the most drastic improvements
occurring in the case of BIDAF with the single-pass decoder and coattention with the dynamic
decoder. This result should not be surprising, as the advantage provided when encountering
out-of-vocabulary words is considerable.

As mentioned above, we also ran a number of tests varying the number of iterations for the
dynamic decoder or the dynamic decoder’s loss function, but these ultimately did not lead to
significant variations in results, except for a few extreme examples where an error in implementation
resulted in especially low metric results.

7 Conclusion

We find that implementing coattention on a simple BiDAF model significantly decreases performance
across all metrics; NLL, F1, EM and AvNA. Implementing the Dynamic Decoder alongside
coattention improves its performance, however, not enough to reach BiDAF baseline performance.
We also find that the dynamic decoder and highway network lower performance on a BiDAF model
without coattention, which indicates that the function of the dynamic decoder and highway network
complement coattention but not BiDAF attention. We suspected this result, as the work of Caiming
Xiong on coattention on the state of the art SQuAD model emphasised the importance of their
combined implementation.

We find that implementing character embeddings improves performance significantly on all
models we tested. It had the largest effect on F1 scores in the BIDAF model without the dynamic
decoder and highway network, whose score it increased by over 2 points. On all other models
it increased performance by less than 1 point, which indicates that coattention networks and
dynamic decoders implemented with highway networks may decrease the effectiveness of character
embeddings on a simple model.

Our chief achievements are discovering the extent to which coattention is detrimental on a
simple BiDAF network, as well as showing that increase in performance by character embeddings
implementation is lower on a simple model with coattention than it is on one with BiDAF.

One of our primary limitations is the lack of variations in models that we test coattention
on. Although we suspect that coattention is ineffective on across simple SQuAD models, we
were only able to test it on one standard baseline, and only investigated three common Question
Answering model techniques. Future work could go through the techniques applied in the previous
state of the art model that coattention improved in order to find out for which techniques coattention
improves a model when implemented alongside them. This may create an avenue for more concise
recommendations when implementing a coattention layer.

We were also limited by the amount of iterations that the Dynamic Decoder was able to ac-
commodate on our virtual machine. This is due to limited storage on our virtual machine. Our
models in the results section were run with a Dynamic Decoder using 2 iterations. We also ran tests
with one iterations and with three iterations and noticed minimal effects. An interesting area for



for future work would be to run the dynamic decoder together with coattention on higher iterations.
Since the Dynamic Decoder improved the results of coattention, it is possible that higher iterations of
the Dynamic Decoder would yield results in line or higher than the BiDAF baseline.

References

"CS 224N Default Final Project: Building a QA system (IID SQuAD track)." (2022).

Lu, Jiasen, Jianwei Yang, Dhruv Batra, and Devi Parikh. "Hierarchical Question-Image
Co-Attention for Visual Question Answering." arXiv preprint arXiv:1606.00061 (2017).

Seo, Minjoon, Aniruddha Kembhavi, Ali Farhadi, and Hananneh Hajishirzi. "Bi-Directional
Attention Flow for Machine Comprehension." arXiv preprint arXiv:1611.01603 (2018).

Xiong, Caiming, Victor Zhong, and Richard Socher. "Dynamic coattention networks for question
answering." arXiv preprint arXiv:1611.01604 (2018).



	Key Information to include
	Introduction
	Related Work
	Approach
	Baselines
	Implementation

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion

