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Abstract

Training models that are robust to data domain shift has gained an increasing
interest both in academia and industry [1]. Question-Answering language models,
being one of the typical problem in NLP research, has received much success with
the advent of large transformer models [2]. However, existing approaches mostly
works under the assumption that data is drawn from same distribution which is
unrealistic.
In this paper, we explore adversarial training approach towards learning domain-
invariant features so that language models can generalize well to out-of-domain
datasets. We also inspect various other ways to boost our model performance
including data augmentation by paraphrasing sentences, conditioning end of answer
span prediction on the start word, and carefully designed annealing function. Our
initial results shows that in combination with these methods, we are able to achieve
15.2% improvement in EM score and 5.6% boost in F1 score on out-of-domain
validation dataset over the baseline. We also dissect our model outputs and visualize
the model hidden-states by projecting them onto a lower-dimensional space, and
discover that our specific adversarial training approach indeed encourages the
model to learn domain invariant embedding and bring them closer in the multi-
dimensional space.

1 Introduction

Question answering in language modeling is a difficult task as it requires language models to
understand the context and the question. Transformers based encoder-only models such as BERT [3]
has had tremendous success in solving these tasks. These models are pre-trained on a tremendous
amount of unlabeled data from BooksCorpus [4] and Wikipedia, and then fine-tuned on downstream
tasks like question-answering. During fine-tuning, these models encode both question and context
embedding together separated by a special separator token [SEP], and then predicts for each context
word probabilities for it being either a start word or an end word. Fine-tuning these models yield
impressive results using only a single classification layer on top of pre-trained BERT.

While these models result in great performance on downstream tasks, they fail to generalize well
across datasets. This is attributed by the inherent domain gap between various datasets which causes
a large performance drop when tested on an unseen dataset. We attempt to minimize this domain
gap and work towards building a model that is robust to domain shifts in dataset by learning domain-
invariant features through adversarial training. We show through systematic evaluations that our
approach actually helps the network close this gap and generalize better to the out-of-domain
datasets.
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We also condition our end_logit prediction on the start_logit through an MLP and a Self-Attention
prediction head, and we find that in both cases it boosts the performance further. Our approach to
minimizing the domain gap through adversarial training to confuse a discriminator working towards
classifying the domain that each sample came from is intuitive and have proven to work in computer
vision literature [5, 6, 7]. Additionally, we tried augmenting our data using paraphrasing by back
translation and word substitution with close embedding [8]. We observed that such technique does
help with generalization and over fitting issue and has positive improvement on out of domain
classification task.

Concretely, our main contributions can be summarized as:

• We show through various qualitative and quantitative evaluations that adversarial training
helps the model learn domain-invariant features across various datasets.

• We design an annealing function called heated tanh annealing, and show that it improves
the model performance.

• We present a simple conditional MLP and Self-Attention prediction head for start and
end logits prediction, and show through various experiments that they further helps the
model perform better.

2 Related Work

Domain Adversarial Training: The idea of adversarial training was first proposed by [9] and is
mainly used for task generation problem. Since then, learning domain invariant features through
adversarial training framework has gain increasing attention in research community.

One method proposed by [10] trained 2 classifiers one to perform task specific classification task and
the other, using the hidden state of the first classifier, predicts whether the data belong to source or
target domain. Lee et al. [11] implemented a multi-domain classifier for the question-answering task
to correctly predict the domain each data sample came from, while the QA model objective was set to
minimize the KL divergence between discriminator output and a uniform distribution. Sato et al. [12]
expanded on the binary classification discriminator architecture with an additional neural layer for
each domain, which captures domain-specific feature representations and applied it to dependency
parsing tasks.

Data Augmentation: Data augmentation has been shown to prevent model from over-fitting. Longpre
et al. [8] explored data augmentation for QA task by paraphrasing the question context through
back translation. Along the same line, Garg et al. [13] used BERT-MLM to generate alternatives
sentences for masked tokens. Wei et al. [14] proposed some easy data augmentation techniques such
as synonym replacement, random insert, random swap and deletion which are shown to improve
performance of task with limited small data set.

We take inspiration from these work and build a model that is able to learn domain-invariant features,
and further boost its performance through several techniques such as conditional logits prediction,
data augmentation, annealing, and fine-tuning.

3 Approach

We set out to explore the domain-gap within various QA datasets [15, 16, 17, 18, 19, 20] by projecting
higher-dimensional embedding extracted through a language model trained on humongous volume
of unlabeled data onto a lower-dimensional space and then visually inspecting them. Specifically,
we use a pre-trained DistilBERT model and project the hidden-states vectors onto a 2-dimensional
space using t-SNE [21]. We observe that there indeed exists a domain-gap across these datasets as
shown in figure 3a. Furthermore, we see that when these networks are fine-tuned on a downstream
task, it further segregates the embeddings farther apart to a point where data from each dataset is
clustered in its own island of higher-dimensional space. This motivates our approach of adversarial
training regime where a discriminator is trained with an objective of classifying the dataset domain of
question-answer pair, and the language model works towards confusing the discriminator. We call
our model QAGAN, and as shown in figure 3c, it does reduce the domain gap across datasets.
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We work with 6 datasets [15, 16, 17, 18, 19, 20] in our work, for three of which (indomain_train)
we have 50k training samples per dataset, and for the other three (oodomain_train) we have 127
training samples as described in section 4.1. Goal of our work is to train a model that generalizes
well to oodomain_val and oodomain_test dataset.

3.1 Baseline

Our baseline system fine-tunes a pre-trained DistilBERT [22] on all indomain_train dataset. The
loss function is set up as a combination of negative log likelihood for the start and end location.

3.2 QAGAN

For building our model, we take the huggingface’s [23] implementation of DistilBERT [22] and
build a simple MLP-based prediction head to attach on top of the pre-trained DistilBERT’s sequence
encoder output. We also take the discriminator model implementation from the work by Lee et al. [11]
and add support for training the model in adversarial fashion. The discriminator was implemented
such that it works towards discriminating the dataset domain by operating on its [CLS] representation
as it summarizes the whole context of the paragraph.

We also take inspiration from Wang et al. [24] and design a conditional prediction heads to condition
our end_logits prediction on start_logits and notice that it improves our model performance. Two
prediction heads designed in our work were linear MLP and self-attention based, and while both
improved our model performance, we find the linear conditional head to yield the best results. These
two models are shown in figure 1.

(a) qagan with linear conditional prediction head (b) qagan with self-attention based conditional pre-
diction head

Figure 1: Variants of QAGAN

We train our question-answering (QA) model by minimizing the negative-log-likelihood loss between
ground-truth and prediction. In addition, we train our discriminator to classify the dataset domain
class correctly, while the QA model learns how to fool the discriminator into outputting random
dataset class probability.
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During QA model training we optimize the loss function, Lqagan = LQA + λ1Ladv , and during the
discriminator model training we optimize the loss function LD, where λ1 and λ2 is a hyper-parameter
chosen to control the importance of adversarial loss. Furthermore, Ladv is optimized every nfd steps
and LD is optimized every ntd steps.

N , ŷi,s, and ŷi,e in equation 1 are the total number of in-domain data, the start position and the
end position of answer in the passage respectively. ŷi,c and hcls in equation 2 are the class of the
dataset and [CLS] hidden representations respectively. By adding this term in the loss function during
training the QA model, it is encouraging the QA model to produce hidden states that would confuse
the discriminator model such that it would output random probabilities for each class.

During our initial experiments we did not observe considerable performance improvement, and
we hypothesize that at the beginning of training, discriminator does not have much information
to go off from, and hence training it to correctly classify the domain while the QA model works
towards confusing it ends up worsening the model performance. To counter this, we design an
annealing function (heated tanh annealing) described in section 3.2.1 which helps improve the
network performance and also allows it to learn domain-invariant features. Additionally, we replaced
the discriminator input with complete hidden states instead of just the [CLS] representation to
examine its effects, and it did not seem to improve the performance.

Lee et al. [11] used Kullback-Leiber divergence between uniform distribution and the distribution of
class probability generated by the discriminator during QA model training which helped the model
generate a representation such that it confuses the discriminator. In our work, we also replaced this
loss function with negative log-likelihood between the discriminator output and random classes, and
it proved to improve the model performance slightly.

3.2.1 Heated Tanh Annealing

(a) nws=10k, nmax=250k (b) nws=150k, nmax=250k

Figure 2: Heated Tanh Annealing for optimizing discriminator.

We designed an annealing function as given by equation 4 and illustrated in figure 2. This function
allows the discriminator to initially learn a good model for domain classification, and slowly after
nws warm-up steps, the model starts using the discriminator output as a proxy for learning domain-
invariant features. We find that weighting the fake discriminator loss with this function resulted in an
improved performance as expected.

fanneal(z) =
tanh(2 ∗ 2z−nmax−nws

nmax−nws
) + 1

2
(4)

Where, nmax is maximum number of steps, and nws is the number of warm-up steps.

3.2.2 Conditional QA Prediction Head

We designed two conditional heads for start and end logits prediction. These heads are illustrated in
figures 1a and 1b respectively.
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Linear Conditional Head: Sequence output of DistilBERT is passed through an MLP to produce
start_logit which is then concatenated with the same sequence and passed through another MLP
to produce end_logit.

Self-Attention Conditional Head: Sequence output of DistilBERT is passed through a self-attention
layer followed by an MLP to produce start_logit. Output of this self-attention layer is concate-
nated with the sequence output and fed through another self-attention layer followed by another MLP
layer to then produce end_logit.

3.2.3 Data Augmentation

For data augmentation, we tried 2 different techniques to generate more data in order to regularize
the model for more robustness.

Back Translation: We used a trained machine translation model MarianMTModel [25] provided
by hugging face to translate the context and question into German and translate it back to English
as a paraphrasing mechanism. In order to maintain the quality of the back translation, we slice the
context around the answer text with an added padding. We also make sure that the sliced index does
not happen within a sentence by heuristically looking for sentence ending punctuation. Moreover,
to maintain the translated sentence quality, we calculate a perplexity score using pre-trained GPT-2
model [26] and only take the translated text that doesn’t deviate from original text.

It is also observed that after translation, the answer text will get morphed and can no longer be found
in the translated text. We just skip the generated text under these circumstances.

The paraphrasing reduces the dependency on domain specific sentence structure. For example we see

a tiny girl the size of the old woman’s thumb

Get paraphrased to

a little girl the size of the thumb of the old woman.

Word Replacement: To increase the robustness of word choices, we also does word replacement
where we randomly replace words with its counter parts that is close in embedding space.

(a) Validation plot on model with data augmentation (red) and model without data augme-
nation (blue)

3.3 Fine-tuning:

After the models have been trained on in-domain-train set, we also fine-tune them on the
out-of-domain-train set, and that brings about 3.8% boost in EM score and 3.3% boost in F1
score while tested on out-of-domain-validation set. This however, has worsens the performance
when the model is initially trained on both (in-domain-train + out-of-domain-train) datasets,
and rightfully so, because the model will overfit to the small out-of-domain-train split during
fine-tuning.

4 Experimental Details

We built various variants of QAGAN and performed experiments to test our hypothesis.
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• Starting from the discriminator loss function during QA model training, we experimented
with minimizing KL-divergence between discriminator classification and a uniform distribu-
tion, and negative-log-likelihood between discriminator classification output and random
dataset domain class (Dobj column in table 2).

• We designed several prediction heads including a simple MLP (Phead = mlp), conditional
MLP (Phead = cmlp), and a conditional self-attention (Phead = csat) based sub-network.

• Another option during our model training is to use either [CLS] representation as an
input to the discriminator, or use the complete hidden-states representation, and in our
experiments we found the former to yield better results.

• Using insights from our domain-gap analysis, we will also experiment with enforcing on
better generalization by constraining hidden state to conform to normal distribution (h_kld
column in table 2).

• We also designed an annealing function to aid the training of our discriminator, and experi-
mented with and without this function to evaluate its effectiveness (anneal column in table
2).

• We trained our model by combining the augmented data to evaluate the effectiveness of data
augmentation(aug column in table 2)

• For some of our experiments we also included the out-of-domain train set into the complete
training set to analyze its effect on final model performance (ood_train column in table 2)

For all our experiments, we used a learning rate of 3e − 5, and trained our model for a total of
3 epochs. Hyper-parameters used in our loss functions were: λ1 = 0.5, λ2 = 0.5, nws = 1000,
nmax = 250k, ntd = 1, nfd = 2. Training was done on a machine with single NVIDIA RTX 3090
GPU, and takes about 53 minutes per epoch.

4.1 Dataset Description

Table 1: Statistics for datasets used for building the QA system for this project. Question Source and
Passage Source refer to data sources from which the questions and passages were obtained.

Dataset Question Source Passage Source Train Validation Test
in-domain datasets

SQuAD[17] Crowdsourced Wikipedia 50,000 10,507 -
NewsQA[16] Crowdsourced News articles 50,000 4,212 -
Natural Questions[15] Search logs Wikipedia 50,000 12,836 -
SQuAD Aug Crowdsourced Wikipedia 20,000 - -
NewsQA Aug Crowdsourced News articles 20,000 - -
Natural Questions Aug Search logs Wikipedia 20,000 - -

oo-domain datasets

DuoRC[19] Crowdsourced Movie reviews 127 126 1,248
RACE[20] Teachers Examinations 127 126 419
RelationExtraction[18] Synthetic Wikipedia 127 126 2,693
DuoRC Aug Crowdsourced Movie reviews 314 - -
RACE Aug Teachers Examinations 240 -
RelationExtraction Aug Synthetic Wikipedia 250 - -

We used 3 in-domain reading comprehension datasets (Natural Questions [15], NewsQA [16] and
SQuAD [17]), each have a sample size of 50K for training the QA system and we used 3 small
out-of-domain datasets (RelationExtraction [18], DuoRC [19], RACE [20]) with size of 127 for
fine-tuning. To preprocess the data, we converted each (question, paragraph) into multiple chunks of
size 384 with a stride of 128 in order for it to fit the distilBERT model input dimension.

As introduced in previous section, we also explored various data augmentation techniques including
paraphrasing by back-translation introduced in [27] and semantic-preserving perturbation techniques
introduced in [28] which generates an additional 20K for each indomain datasets and 1K for each
oodomain datasets.
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4.2 Evaluation method

We evaluated our method via two metrics: Exact Match (EM) score and F1 score. Exact Match(EM)
is a strict binary measure that tells us whether the predicted span of words exactly match the reference.
F1 measure, on the other hand, is a more relaxed metric and is the harmonic mean of precision and
recall. Both metrics are widely used in the evaluation of question and answering task. [17]

4.3 Quantitative Results

Table 2: Experimental results of our method on QA validation datasets. Blue color
highlights best performance without fine-tuning on oodomain_train dataset or including
oodomain_train in the train set. Phead → prediction head, h_kld →KLD loss on
hidden-states,Dinput → discriminator input, Dobj → discriminator objective,
ood_train → oodomain_train set included in training, aug → data augmentation.
Prediction Heads: mlp → linear MLP head; cmlp → condition MLP head; csat →
conditional self-attention head.

Method Phead fin
et

un
e

an
ne

al

h_
kl

d

oo
d_

tr
ai

n

au
g

Dinput Dobj ind_val ood_val
F1 EM F1 EM

baseline mlp ✗ - - ✗ ✗ - - 70.49 54.48 48.29 30.89
baseline mlp ✓ - - ✗ ✗ - - - - 49.68 34.03

qagan mlp ✗ ✓ ✗ ✗ ✗ [CLS] KLD 70.10 54.24 46.56 31.15
qagan mlp ✓ ✓ ✗ ✗ ✗ [CLS] KLD - - 47.38 33.25
qagan mlp ✗ ✓ ✗ ✗ ✗ [hidn] NLL 68.88 52.69 46.95 30.89
qagan mlp ✓ ✓ ✗ ✗ ✗ [hidn] NLL - - 48.46 34.03
qagan mlp ✗ ✓ ✗ ✗ ✗ [CLS] NLL 69.85 53.84 46.92 31.68
qagan mlp ✓ ✓ ✗ ✗ ✗ [CLS] NLL - - 49.16 34.03
qagan csat ✗ ✓ ✗ ✗ ✗ [CLS] NLL 69.79 53.67 47.32 31.15
qagan csat ✓ ✓ ✗ ✗ ✗ [CLS] NLL - - 48.87 34.55
qagan cmlp ✗ ✗ ✗ ✗ ✗ [CLS] NLL 70.01 54.06 49.30 32.98
qagan cmlp ✗ ✓ ✓ ✗ ✗ [CLS] NLL 69.85 54.09 47.88 30.89
qagan cmlp ✓ ✓ ✓ ✗ ✗ [CLS] NLL - - 49.05 32.20
qagan cmlp ✗ ✓ ✗ ✗ ✗ [CLS] NLL 70.00 53.84 49.38 34.29
qagan cmlp ✗ ✓ ✗ ✓ ✗ [CLS] NLL 69.56 53.80 50.25 35.08
qagan cmlp ✗ ✓ ✗ ✓ ✓ [CLS] NLL 73.21 55.13 50.49 35.90
qagan cmlp ✓ ✓ ✗ ✗ ✗ [CLS] NLL - - 51.00 35.60

Table 3: Experimental results of our method on QA test datasets. Phead →
prediction head, Dobj → discriminator objective, ood_train →
oodomain_train set included in training, aug → data augmentation. Predic-
tion Head: cmlp → condition MLP head. heated tanh annealing was used for all experiments.

Method Phead fin
et

un
e

oo
d_

tr
ai

n

au
g

Dinput Dobj oodomain_test
F1 EM

qagan cmlp ✓ ✗ ✗ [CLS] NLL 58.193 40.665
qagan cmlp ✗ ✓ ✗ [CLS] NLL 58.671 41.009
qagan cmlp ✗ ✓ ✓ [CLS] NLL 58.898 42.362

Adversarial training helps our model learn domain-invariant features as evident by figure 3c. These
domain-invariant features help the model generalize well to out-of-domain dataset and hence perform
better on the validation set. We train our network with various configurations of parameters and
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notice a consistent improvement in F1 and EM score of out-of-domain validation dataset (ood_val) as
we keep adding components introduced in our work including conditional prediction head, heated
tanh annealing, negative-log-likelihood training of the discriminator during QA model training, and
data augmentation. While we do not notice any improvement in F1 and EM score for in-domain
validation dataset, the scores for our best model on out-of-domain validation set after finetuning our
model on out-of-domain train set is pretty significant (5.6% improvement in F1 score and 15.2%
improvement in EM score).

5 Qualitative Analysis

Effectiveness of Adversarial Training: Figure 3a illustrates the domain-gap across various datasets,
and is extracted through a pre-trained DistilBERT [22] model. We train a baseline QA model
on indomain_train dataset which is formulated by adding an MLP prediction head on top of the
DistilBERT model and analyze the embeddings. As seen in the plot (figure 3b, embeddings for
each dataset coming from this trained model is clustered individually and clearly shows that the
domain-gap is accentuated even more with this setting. Lastly, with our approach, QAGAN, we find
that although multi-modal, various dataset embeddings coexists in similar high-dimensional space as
shown in figure 3c. This solidifies our hypothesis that the adversarial training setting indeed helps the
model learn domain-invariant features

(a) distilbert-features (b) baseline (c) qagan

Figure 3: Domain-gap across various QA dataset embeddings and the effectiveness of applying our
method towards learning domain-invariant features.

Quality of Predicted Answers: We show a few random qualitative samples predicted by our model
and further analyze the quality of predictions in appendix (section 7). In particular, we observe that
the model does extremely well on named entities, but suffers badly with contexts requiring some
common reasoning.

6 Conclusion

We presented a method for training a question-answering language model in an adversarial fashion and
showed through various experiments that it helps the model generalize well to out-of-domain dataset.
We supplemented the discriminator model training with an annealing function, carefully designed
to first let it learn correct classification task and then slowly help the language model learn domain-
invariant features. Furthermore, we condition end logits prediction on start logits which facilitates a
great deal of model improvement. Through systematic experiments with various configurations, we
find that our model, QAGAN, with a conditional linear prediction head provides us the best results and
achieves 5.6% improvements in F1 score and 15.2% improvement in EM score over the baseline. We
analyze the higher-dimensional embeddings produced by our model and confirm that our method of
adversarial training indeed helps the language model learn domain-invariant features and generalizes
well towards out-of-domain datasets.
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7 Appendix

7.1 Qualitative Samples

We show a few randomly selected qualitative sample predictions from our model below. The model
seems to perform well in most cases, particularly doing pretty well for named entities such as “Gupta
Empire” and “Emily Perkins”. Some of the failure cases include large contexts with references that
need prior knowledge built into the system, an example of which would be for the question “when
was the first wonder woman comic released” where the context refers to two dates for two events -
(1) character first appeared in December 1941 (2) character’s first cover was in January 1942. This is
a particularly difficult question to answer as the model should understand that comic release date
refers to when the character was first appeared on Sensation Comics cover.

Question: the golden age of india took place during the rule of the
Context: BPB The Gupta Empire was an ancient Indian empire , which existed at its zenith
from approximately 319 to 485 CE and covered much of the Indian subcontinent . This
period is called the Golden Age of India . The ruling dynasty of the empire was founded by
Sri Gupta ; the most notable rulers of the dynasty were Chandragupta I , Samudragupta ,
and Chandragupta II . The 5th - century CE Sanskrit poet Kalidasa credits the Guptas with
having conquered about twenty - one kingdoms , both in and outside India , including the
kingdoms of Parasikas , the Hunas , the Kambojas , tribes located in the west and east Oxus
valleys , the Kinnaras , Kiratas , and others . EEPE
Answer: Gupta Empire
Prediction: Gupta Empire

Question: Other than the motion picture and television industry, what other major industry
is centered in Los Angeles?
Context: The motion picture, television, and music industry is centered on the Los Angeles
in southern California. Hollywood, a district within Los Angeles, is also a name associated
with the motion picture industry. Headquartered in southern California are The Walt Disney
Company (which also owns ABC), Sony Pictures, Universal, MGM, Paramount Pictures,
20th Century Fox, and Warner Brothers. Universal, Warner Brothers, and Sony also run
major record companies as well.
Answer: music
Prediction: music industry

Question: Where was a lab for Tesla set up?
Context: In late 1886 Tesla met Alfred S. Brown, a Western Union superintendent, and
New York attorney Charles F. Peck. The two men were experienced in setting up companies
and promoting inventions and patents for financial gain. Based on Tesla’s patents and other
ideas they agreed to back him financially and handle his patents. Together in April 1887
they formed the Tesla Electric Company with an agreement that profits from generated
patents would go to Tesla, to Peck and Brown, and to fund development. They set up a
laboratory for Tesla at 89 Liberty Street in Manhattan where he worked on improving and
developing new types of electric motors, generators and other devices.
Answer: Manhattan
Prediction: 89 Liberty Street in Manhattan

Question: who plays unis in she ’s the man
Context: BLiB Emily Perkins as Eunice Bates , Olivia ’s nerdy , eccentric friend and Duke
’s lab partner EELiE
Answer: Emily Perkins
Prediction: Emily Perkins
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Question: Why did Berlin Huguenots switch to German from French in their services?
Context: In Berlin, the Huguenots created two new neighbourhoods: Dorotheenstadt and
Friedrichstadt. By 1700, one-fifth of the city’s population was French speaking. The Berlin
Huguenots preserved the French language in their church services for nearly a century.
They ultimately decided to switch to German in protest against the occupation of Prussia by
Napoleon in 1806-07. Many of their descendents rose to positions of prominence. Several
congregations were founded, such as those of Fredericia (Denmark), Berlin, Stockholm,
Hamburg, Frankfurt, Helsinki, and Emden.
Answer: in protest against the occupation of Prussia by Napoleon
Prediction: protest against the occupation of Prussia by Napoleon in 1806-07

Question: How was scarcity managed in many countries?
Context: Price controls exacerbated the crisis in the US. The system limited the price of
"old oil" (that which had already been discovered) while allowing newly discovered oil to
be sold at a higher price to encourage investment. Predictably, old oil was withdrawn from
the market, creating greater scarcity. The rule also discouraged development of alternative
energies. The rule had been intended to promote oil exploration. Scarcity was addressed by
rationing (as in many countries). Motorists faced long lines at gas stations beginning in
summer 1972 and increasing by summer 1973.
Answer: rationing
Prediction: rationing

Question: In which year did the newspaper define southern California?
Context: In 1900, the Los Angeles Times defined southern California as including "the
seven counties of Los Angeles, San Bernardino, Orange, Riverside, San Diego, Ventura
and Santa Barbara." In 1999, the Times added a newer county—Imperial—to that list.
Answer: 1900
Prediction: In 1900

Question: when was the first wonder woman comic released
Context: BPB Wonder Woman is a fictional superhero appearing in American comic books
published by DC Comics . The character is a founding member of the Justice League , a
goddess , and Ambassador - at - Large of the Amazon people . The character first appeared
in All Star Comics 8 in December 1941 and first cover - dated on Sensation Comics 1
, January 1942 . In her homeland , the island nation of Themyscira , her official title is
Princess Diana of Themyscira , Daughter of Hippolyta . When blending into the society
outside of her homeland , she adopts her civilian identity Diana Prince . The character
is also referred to by such epithets as the Amazing Amazon ” , the Spirit of Truth ” ,
Themyscira ’s Champion ” , the God - Killer ” , and the “ Goddess of Love and War ” .
EEPE
Answer: January 1942
Prediction: December 1941
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