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Abstract

The task of learning from a limited number of examples (few-shot learning) is
valuable because it uses only small amounts of data for prediction, making the
models applicable in practical and realistic situations. In this work, we aim to
train and fine-tune a robust QA model that can generalize well on out-of-domain
datasets in few-shot settings. Our team explored mixture-of-experts (MoE), in-
context learning, data augmentation, complemented by hyperparameter tuning
to improve the domain adaptation robustness of DistilBERT-based[1] question
answering systems. We significantly improved the baseline with a fine-tuned MoE
model, while ending up with no metrics improvement with other approaches. The
performance of in-context learning was subpar compared to the baseline, and
data augmentation techniques were not able to generalize well in our experiments.
Quantitatively, the final submission of our best approach, a fine-tuned MoE network
without other techniques, achieved 43.876 EM and 61.933 F1 score and was
ranked 4th out of 56 submissions in the test set.

1 Key Information to include

• Mentor: Kendrick

• External Collaborators (if you have any): N/A

• Sharing project: N/A

2 Introduction

In the tasks of question answering (QA), language models are given input pairs each consisting
of a context and a question related to the paragraph. Models are trained to extract a text span that
answers the question from the context. Recently, the advances in large-scale pre-trained language
models including BERT[2] has resulted in a huge performance boost on all kinds of natural language
processing (NLP) tasks. With fine-tuning, the insights from pre-trained language models can be
transferred to QA tasks. In certain datasets such as SQuAD, recent work has even produced systems
that surpass humand-level performance in certain metrics[3]. However, while humans can easily
generalize learnings in related tasks, language models often struggle to transfer the knowledge
between datasets. Models trained on in-domain datasets typically need to be fine-tuned on thousands
of out-of-domain examples to perform well. In few-shot settings, when only limited numbers of
examples are available, the performance degrades significantly for such systems.

In this paper, we explore several techniques to make our DistilBERT-based QA models more robust
on out-of-domain datasets in few-shot settings. Specifically, we implemented a simplified mixture-
of-experts (MoE) model, where a gating network classifies the input sequence according to its data
source, and forwards the input to the specialized domain expert. We also explored prompt-based
in-context learning techniques, adding a querying prompt and mask tokens in between a question and
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a context to align the training objective (MLM) with the pre-trained framework. Finally, we evaluated
these approaches with and without data augmentation techniques and hyperparameters tuning.

3 Related Work

3.1 Mixture-of-Experts (MoE)

Mixture-of-experts was first introduced by Jacobs et al.[4] where separate networks learn to handle
a subset of the complete set of training cases, which can be viewed as either a modular version of
a multi-layer supervised network, or as an associative version of competitive learning. Since then,
various applications and improvements of MoE have been proposed. For example, Shazeer et al.[5]
introduced a sparsely-gated mixture-of-experts layer, a trainable gating network determining a sparse
combination of the experts to use for each example. Another example is conditional computation
where parts of the network are active on a per-example basis. We also got inspiration from Eigen et
al.[6], where multiple sets of gating and experts were used to tackle sub-problems.

3.2 In-context Learning

Large pre-trained models such as GTP-3 are known to display "in-context" learning
characteristics[7][8][9], in which NLP tasks can be formulated into masked language modeling
tasks with a querying prompt (prompting: Figure 4). Additional demonstrative text sequences with
the same structure can be appended to the querying sentence to "show" how related problems should
be solved[10] (demonstration). Both prompting and demonstration can be used at training or inference
time, giving in-context language models more contextual evidence to generate the correct answer.
While classification problems have been shown to work "in-context" on smaller pre-trained models
such as BERT[11], our paper explores in-context QA models which are more challenging.

3.3 Data Augmentation

Data augmentation techniques are commonly used in NLP tasks to generate additional and synthetic
data in response to a lack of annotated training examples[12][13]. The effectiveness of context para-
phrases on improving the performance and robustness of QA systems has been investigated[14][15].
The studies claim that back-translation significantly improved the F1/EM scores.

4 Approach

Our QA system is built with 3 main building blocks as shown in the Figure 1, namely,
a DistilBERT-based mixture-of-experts gating network, in-context learning components, and
data augmentation. The system is set up to conduct experiments on flexible combina-
tions of individual components. We implemented the mixture-of-experts classifier based
on DistilBertForSequenceClassification1, heavily modified FewShotDataset2 and
DistilBertForMaskedLM3 for in-context learning on QA datasets, and integrated nlpaug4 into the
system for data augmentation capabilities.

4.1 Baseline

The DistilBERT baseline model, as shown in Figure 2, DistilBertForQuestionAnswering5,
trains a classification head responsible for classifying which indices from the context have the best
chance of being the start or end of the answer to the question. The model takes a question-context
pair as sequence input, whose generated hidden states are then consumed by a classification head.
The loss function is the summation of cross entropy loss between golden indices and predicted ones.

1https://huggingface.co/docs/transformers/model_doc/distilbert#transformers
2https://github.com/princeton-nlp/LM-BFF/blob/main/src/dataset.py
3https://huggingface.co/docs/transformers/model_doc/distilbert#transformers
4https://github.com/makcedward/nlpaug
5https://huggingface.co/docs/transformers/model_doc/distilbert#transformers
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Figure 1: System Architecture

Figure 2: DistilBERT with classification head for QA (baseline)

4.2 Mixture of Experts

In the mixture-of-experts network[16], multiple DistilBERT QA model instances are fine-tuned
corresponding to every individual out-of-domain dataset. Additionally, a top-level gating network is
trained for classifying the input source and forwarding the input to the potential domain experts. The
final model output y is taken as the weighted average of outputs of domain experts, which could be
formulated as

y =
∑
i

gifi

where fi is the output of input x evaluated on expert i’s DistilBERT QA model and gi is the mixture
weight for this expert i produced by the gating function applied to input x.

We chose DistilBertForSequenceClassification as the core part of our gating network. And
after observing that it was quite easy for a DistilBERT-based classifier to achieve a very high
classification precision in these 3 datasets, we simplified this approach by removing the averaging
layer. Complementarily, we introduced another "generalist" model, which was fine-tuned on all
out-of-domain datasets, to make prediction when the classifier got confused. In other words, the
final output of our mixture-of-experts network is purely based on one domain expert model or the
generalist model. The predicted domain expert model will determine the final output when it earned
a high-enough confidence score from the classifier, otherwise the generalist model will take it over.

We also performed analysis on the confidence score distribution to figure the right confidence
threshold here, as shown in 3a. In validation set, the gating network produced a confidence score less
than 95% for only 10 out of 382 test samples, and all errors fell into this bucket.

With all the modifications mentioned above, the output y of our final version model could be
formulated as

y =

{
fi if gi ≥ 0.95

fgeneralist otherwise
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where fgeneralist is the output from the generalist model. And the whole network architecture could
be visualized as 3b.

(a) Confidence score distribution (b) Mixture-of-experts model architecture

Figure 3: Mixture-of-experts

4.3 In-context Learning

Figure 4: In-context learning for QA

Our in-context implementation for QA system (in-context QA) is inspired by LM-BFF[11] and
DistilBertForQuestionAnswering. Nonetheless, many adaptations are required when applying
in-context learning to QA datasets. For instance, instead of a classification head in the default model,
our approach uses a DistilBERT MLM head to generate start and end indices at two <mask> locations
of a querying prompt in an "in-context" manner, as shown in Figure 4. Moreover, in order for certain
generated words to convey unambiguous meanings of labels, a Label Word Mapping between MLM
generated words and the true label is required. Unlike LM-BFF’s classification mapping which
contains only a few catagories, our in-context QA model is capable of generating indices in output
language. This is achieved by using a much larger category mapping that covers all 512 available
locations from input sequences.

Engineering-wise, in-context QA uses an innovative two-pass tokenization process to construct in-
context input_ids before feeding examples to DistilBERT. The first pass comprises of the standard
sentence pair tonkenization specifically supported by DistilBertTokenizer for QA tasks. It is in
this pass that long contexts can be broken down into suitable sequence length that is in compliance
with DistilBERT’s maximum sequence length. In the second pass, the prompt template crucial for
in-context learning is tokenized and injected.

The advantage of this design is that demonstration, a technique that combines multiple examples
into 1 input sequence, can be easily supported. Although we did not get to experiment with the
demonstration setup due to the nature of QA tasks and the sequence length limitation of DistilBERT.
QA tasks generally requires more context for answers to be identified. We are finding it challenging
to meaningfully fit more than 1 QA pair in the 512 maximum supported sequence token length6.

In terms of loss function, the choice of framing QA as a language modeling task allows us to use the
standard encoder-decoder objective that maximizes the log likelihood of the text in the ground truth
target from the output of the model, specifically at the masked indices. Formally,

L(θ) = −logP(yms |x; θ)− logP(yme |x; θ)
6https://github.com/huggingface/transformers/issues/1791
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4.4 Data Augmentation

We employed a few selected data augmentation techniques provided in nlpaug[17] in our system,
based on their past success and adaptability to QA datasets. In order for these techniques to not disrupt
the question answering coherence while still providing similar but different contextual reinforcement
from original datasets, the augmentation will only be performed in the context text with the sentence
including answer phrases fully preserved. Examples could be found in Appendix A.1.

The data augmentation techniques we selected include

• Back Translation: Translate the context text from English to an intermediate language, e.g.,
German, and then back to English using Facebook WMT19 models7.

• Random Swap (RS): Randomly swap a word with its siblings in the same sentence.

• Synonyms Replacement (SR): Replace some words with their synonyms.

4.5 Hyperparameter Tuning

Besides the major components mentioned above, we also identified two hyperparameter-tuning tricks
from our analysis on data and model, which led significant performance boost.

4.5.1 Reduced Output Length

After inspecting model outputs and error pattern, we found the model is likely to produce over-detailed
predictions like the example in Appendix A.2. The results make sense to the question, but they hurt
both EM and F1 scores. Given the length of answers in out-of-domain datasets are relatively shorter
and no answers are longer than 8 words, we reduced the max length of model outputs from 30 words
(default setup) to 9 words to reduce such redundancy.

4.5.2 Number of Frozen DistilBERT Layers when Fine-tuning

We observed that the first a few layers of DistilBERT carry important lower-level language features,
which could be transferred really well between datasets. Motivated by this finding, we conducted
experiments to figure out the best amount of layers to freeze. It turned out freezing embedding layers
and first 4 layers of transformers block when fine-tuning the model worked best.

5 Experiments

5.1 Data

The datasets we use are provided by the CS224N teaching staff. Each input consists of a context-
question pair and answer to each question is guaranteed to be located within the context. The datasets
are divided into two categories: in-domain datasets out-of-domain datasets. The amount of data
samples in each dataset is shown in Table 1. The in-domain datasets all contain 50,000 training
examples, while out-of-domain datasets only have 127 training examples individually, which made
the knowledge transfer between datasets very critical.

5.2 Evaluation method

To analyze the performance of our model, we used the evaluation method provided by the CS224N
staff. The best performing models are determined by their exact match (EM) and F1 scores of QA
span predictions. The EM score is a binary measure of whether the system output matches the ground
truth answer exactly, and the F1 score is the harmonic mean of token-level precision and recall of
predictions. The models were first trained on training sets, and then evaluated on the out-of-domain
dev sets. The model with best performance in dev sets is is selected for benchmarking on test sets.

7https://huggingface.co/facebook/wmt19-en-de
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Dataset Question Context Train Dev Test
In-domain Datasets

SQuAD[18] Crowdsourced Wikipedia 50,000 10,507 -
NewsQA[19] Crowdsourced News articles 50,000 4,212 -
Natural Questions[20] Search logs Wikipedia 50,000 12,836 -

Out-of-domain Datasets

DuoRC[21] Crowdsourced Movie reviews 127 126 1248
RACE[22] Teachers Examinations 127 128 419
RelationExtraction[23] Synthetic Wikipedia 127 128 2693

Table 1: Data sources and splits

Model name EM/F1 (Dev) EM/F1 (Test)
Baseline 34.55/50.28 -
Back Translation (BT) 32.46/47.45 -
Random Swap (RS) 35.08/50.11 -
Synonyms Replacement (SR) 34.03/49.21 -
Reduced Output Length (ROL) 34.82/50.92 -
Mixture of Experts 37.17/52.44 42.94/59.82
Mixture of Experts (ROL) 38.73/54.19 43.85/61.90
Mixture of Experts (RS, ROL) 38.22/54.27 -
Mixture of Experts (SR, ROL) 39.27/53.75 -
Mixture of Experts (with Generalist, ROL) 39.01/55.13 43.88/61.93
In-context Learning 17.28/39.94 -
In-context Learning (SR) 18.48/38.79 -

Table 2: Experimental results on validation and test sets

5.3 Experimental details

The baseline model was trained on all in-domain datasets and then fine-tuned on all out-of-domain
datasets. Random-swap augmentation was configured to randomly swap nearby words in the same
sentence at max 10 times. Synonyms replacement augmentation was configured to randomly replace
words at max 10 times. Reduced output length (ROL) reconfigured model to output predictions not
longer than 9 words. Mixture-of-experts classifier was trained in in-domain datasets individually
with precision as its north-star metric during evaluation. Generalist models were directly taken from
the baseline models, and domain expert models were fine-tuned individually on its corresponding
out-of-domain dataset. In-context QA models were configured to run with or without Synonyms
Replacement to evaluate if any gain can be achieved with data augmentation.

All models were trained with learning rate 3× 10−5 and up to 10 epochs. After finishing an entire
epoch of training, the checkpoint is evaluated in the dev set to obtain its metrics. The checkpoint
with highest F1 score on dev set will be saved as the final model when training the QA model,
and the checkpoint with highest precision on dev set will be saved when training the classifier in
mixture-of-experts gating network.

5.4 Results

By assembling multiple approaches and optimization techniques, we obtained performance metrics
of 12 variants of our system, as shown in Table 2.

5.4.1 Mixture-of-experts Models

The performance metrics of all expert models and generalist models on individual out-of-domain
dataset show in Table 3. As we expected, all expert models outperformed the generalist model on their
specialized domain. By being trained individually, DuoRC expert models showed biggest performance
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Model name EM/F1 (Dev) EM/F1 (DuoRC) EM/F1 (RACE) EM/F1 (RE)
Generalist 34.55/50.28 30.16/40.84 18.75/35.26 54.69/74.60
DuoRC Expert - 35.71/46.42 - -
RACE Expert - - 21.09/36.06 -
RE Expert - - - 54.69/74.76

Models with Random Swap (RS)

Generalist (RS) 35.08/50.11 28.57/38.34 19.53/35.54 57.03/76.27
DuoRC Expert (RS) - 35.71/45.07 - -
RACE Expert (RS) - - 22.66/37.82 -
RE Expert (RS) - - - 59.38/78.24

Models with Synonyms Replacement (SR)

Generalist (SR) 34.03/49.21 27.78/37.66 17.19/33.18 57.03/76.62
DuoRC Expert (SR) - 37.30/46.64 - -
RACE Expert (SR) - - 18.75/37.55 -
RE Expert (SR) - - - 58.59/78.53

Models with Reduced Output Length (ROL)

Generalist (ROL) 34.82/50.92 33.33/44.34 21.09/36.46 50.00/71.85
DuoRC Expert (ROL) - 37.30/47.16 - -
RACE Expert (ROL) - - 22.66/38.34 -
RE Expert (ROL) - - - 60.94/78.64

Table 3: Performance of expert models and generalist models on dev sets

Model name Precision (Dev) Precision (Test)
Mixture-of-Experts Classifier 98.43% 99.45%

Table 4: Performance of the mixture-of-expert data domain classifier on dev and test sets

boost with EM+6.55/F1+6.03 on average. And RACE expert models gained EM+2.15/F1+2.33
boost on average. RelationExtraction expert models gained subtle improvements without reduced
output length trick (ROL) applied, but with ROL, the expert model got significant improvement of
EM+10.94/F1+6.8 by being trained individually, which is very unexpected.

The classifier in mixture-of-expert network, which is used to assign input data to individual expert,
has reached very high precision in both dev and test set, as shown in Table 4. In the dev set, it reached
98.43% precision, meaning 376 out of 382 samples were classified correctly. Out of our expectation,
the classifier even achieved higher precision of 99.45% in the test set, which indicates that only 24
out of 4360 data samples resulted in wrong expert assignment.

Based on the strong performance of MoE classifier and significant performance gain by individual
expert models, the MoE approach gained EM+2.62/F1+2.16 by nature, which was ranked top-10 of
submissions ordered by EM score. Identified that most errors of expert assignment were caused by
low confidence score, we introduced generalist model activated by low confidence score as the fix,
which turned out to work really well in dev set with EM+0.28/F1+1.06. But unfortunately, this fix
only earned +0.03 EM/F1 in test set.

5.4.2 Data Augmentation

Surprisingly, data augmentation didn’t bring much improvements to our model, instead, its perfor-
mance effects seemed unpredictable - it could improve EM or F1 score by a small points, but it could
also hurt the performance. The randomness introduced by data augmentation greatly hindered us
from improving the model performance steadily, and we decided not to try out possible combinations
of multiple augmentation techniques.
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5.4.3 In-context Learning

For in-context QA model, as we anticipated, it did not perform as well as other configurations
possibly due to a downsized model and the lack of training examples that are usually required for
better in-context performance. What we did not anticipate, however, was that data augmentation
did not help to improve upon the vanilla in-context configuration. We speculate that the amount of
augmented data we deployed was simply not enough to make a difference in in-context QA models.

5.4.4 Hyperparameter Tuning

Reducing the length of model output has showed us significant performance improvement by
EM+1.56/F1+1.75 from very beginning, which is really impressive. This could be caused by the
nature that the ground-truths in all 3 out-of-domain datasets are really short. Finally, by combining
the mixture of experts model with this trick, we reached the best scores in the validation set with
39.01 EM score and 55.13 F1 score. And the final submission of this approach was ranked 4th place
out of 56 submissions in the test set, with 43.88 EM score and 61.93 F1 score.

6 Analysis

The success of mixture-of-experts was largely due to the skewed distribution of tasks and data in the
three out-of-domain datasets. It shows that our models might be fine-tuned to one specific dataset,
but not all three of them at once. The high classification precision achieved by MoE classifier also
suggested that out-of-domain datasets have very different characteristics in latent space. Also, the
test set contains about 2,700 questions from RelationExtraction dataset, while only 1,248 questions
from DuoRC and 419 questions from RACE. This data distribution is not aligned with it in training
and dev sets, resulting best metrics in dev set cannot be directly translated to the test set performance.
Actually from Table 3, it’s very intuitive that the RelationExtraction is the easiest one among all three
out-of-domain datasets. Given most test samples are from this easiest dataset, optimizing towards the
RelationExtraction dataset is the key to obtain a highly-ranked result. This also explains why most
teams were able to obtain much better EM and F1 metrics in the test set than in the dev set.

In-context learning did not perform as well as other methods due to various factors. For a start,
the lack of demonstration means less contextual correlations were made during training. A good
demonstration strategy is required to fit potentially long context into the limited sequence length
supported by DistilBERT. Demonstration will increase both training and inference efficiency, which
might improve model performance for In-context QA models. Moreover, the current training objective
and loss function that solely depend on the correctness of start and end indices can be improved
upon. Loss function that capture answer text span and the language distributions of target domains
(MLM-based) can be engineered together.

Data augmentation techniques achieved mixed results with unreasonable randomness. We managed
to identified a few failure modes in which structural information of answers or/and context has been
broken by careless replacement or swapping of key information. Although we tried to mitigate its
effect by only augmenting the context text and not the answer text in our datasets, there is still risk in
changing the contextual text or dataset characteristics too much. This could be why augmentation
techniques that significantly alter the text, e.g., back-translation, generally yield worse results.

7 Conclusion

After trying out many combinations of techniques, we concluded that the simple idea of mixture-
of-experts worked very well, since drastically different distribution and quality were observed in
target datasets. We also emphasized the importance of tuning hyperparameters based on statistical
understanding of the datasets. Even without significant fruits from in-context learning and data
augmentation, we conducted very valuable exercises and identified possible difficulties on applying
those techniques in reality.

Under the constraint of both time and resources, we were not able to try out more possible combination
of the techniques we implemented. As future work, we could conduct more experiments leveraging
the composability of our system, and also research towards identifying the root cause of the poor
performance of our in-context learning implementation and exploring effectiveness of demonstration.
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A Appendix

A.1 Example of Augmented Text

Context: In olden times, England is in turmoil. With the death of the King, noone can decide who is
the rightful heir to the throne. With war threatening to tear the country asunder, a stone and anvil
appear from the heavens in London town, with a sword planted firmly in the anvil. On the hilt
of the sword, read the words, "Whoso pulleth out this sword of this stone and anvil is rightwise king,
born of England."
Augmented by Back Translation: In ancient times, England was in turmoil. With the death of the
king, no one could decide who was the rightful heir to the throne. With war threatening to tear the
country asunder, a stone and anvil appear from the heavens in London town, with a sword
planted firmly in the anvil. The handle of the sword reads: "Whoever draws this sword out of this
stone and anvil is a righteous king, born in England.
Augmented by Random Swap: In olden times, England is the in turmoil. With death of King, the
noone can decide who is rightful the to heir the throne. With war threatening to tear the country
asunder, a stone and anvil appear from the heavens in London town, with a sword planted
firmly in the anvil. On the of hilt the read sword, words, the "Whoso pulleth out sword this this of
stone and anvil is rightwise born king, of England.
Augmented by Synonyms Replacement: In olden times, England is in turmoil. With the death of
the King, noone can settle who be the rightful heir to the throne. With war threatening to tear the
country asunder, a stone and anvil appear from the heavens in London town, with a sword
planted firmly in the anvil. On the hilt of the sword, read the words, "Whoso pulleth out this blade of
this stone and incus be rightwise king, born of England.

* Note that the sentence containing answer from the heavens in London town remained un-
touched during augmentation.

A.2 Error Examples

Question: How big were his artificial bolts?
Context: He produced artificial lightning, with discharges consisting of millions of volts and up to
135 feet long. Thunder from the released energy was heard 15 miles away in Cripple Creek, Colorado.
People walking along the street observed sparks jumping between their feet and the ground. Sparks
sprang from water line taps when touched. Light bulbs within 100 feet of the lab glowed even when
turned off. Horses in a livery stable bolted from their stalls after receiving shocks through their metal
shoes. Butterflies were electrified, swirling in circles with blue halos of St. Elmo’s fire around their
wings.
Answer: 135 feet
Prediction: up to 135 feet long.
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