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Abstract

When it was published in 2018, QAnet [1] revolutionized question answering mod-
els by replacing traditional LSTM-based models with transformers. Transformers
don’t suffer from long-term dependancy information loss like RNNs do, but since
they process entire sentences at a time, they can only learn from context within
their fixed input window. My aim is to fix this issue by reintroducing an element
of recursion into the transformer-based model as described in Transformer-XL
[2] and update QAnet to be competitive on SQuAD v2.0. To accomplish this, I
1) redesigned and re-implemented the QAnet structure to include word-character
embedding convolutional layers to increase contextual information learned and 2)
applied transformer-XL to each encoder block by storing previous hidden states
in memory, reusing them in calculations of the next hidden state, and using rela-
tive positional embeddings. I found that the word-character convolution worked
exceptionally well, and when applied to the baseline BiDAF model were able
to achieve EM/F1/AvNA = 59.5/63/69. The base QAnet was able to perform
at similar levels to the baseline, at EM/F1/AvNA = 53.44/56.15/64.31, but the
transformer-XL improvements did not help and in fact made the model worse,
clocking in at EM/F1/AvNA = 59.5/63/69.
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2 Introduction

Question Answering (QA) has long been a major area of focus in natural language processing.
The field had long been dominated by recurrent neural networks (RNNs) before the advent of the
transformer [3], a powerful new architecture that has become the industry standard in QA and many
other fields. In this project, I seek to combine the best of both worlds and introduce recurrent elements
into transformer-based QA models so that they can recapture some of the unique benefits that their
predecessors offered.

Question answering involves taking a query and scanning a relevant context paragraph for the span
that represents the answer. Previously, this was done with RNNs by sequentially processing each step
of the context/query and using information from each previous word to inform the encoding of the
next word. This allows RNNs to build contextual relationships, but it suffers from memory loss over
long sequences (values in matrices that are multiplied so many times they lose any sort of meaning)
and are slow to train. By instead processing entire sequences at once and using self-attention to
determine which words are more relevant to other words, this problem is avoided entirely. This is
exactly what transformers do, and QAnet [1] leveraged this to acheive record-breaking scores on
SQuAD v1.1.
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In this project, I re-implement my own version of QAnet from scratch as the backbone of my model.
While QAnet is able to acheive remarkable results on SQuAD v1.1, it may struggle with the many
"no answer" questions in SQuAD v2.0, as indicated by the AvNA score. I hypothesize that part of
this may be due to encoding layers not being able to retrieve contextual information from sentences
outside of the fixed input window due to the fixed input window size of transformers. As such,
I expand upon QAnet by implementing Transformer-XL [2] on top of it, namely segment-level
state reuse and relative positional encodings. In segment-level state reuse, during multi-head self-
attention computation, hidden states from each iteration of the model (i.e. each batch or sequence
of words/characters computed) are stored into memory and recalled during the next stage to retain
contextual information. To incorporate past information, we simply concatenate with the new data.
In order to retain information about from the positional embeddings, which would no longer make
sense when concatenating the old and new data, we use fixed positional embeddings with learnable
transformations so that the values can be trained over time as useful data is concatenated [2].

Additionally, I add in a convolutional embedding layer on combined word and character embeddings,
which I call the contextual layer. The purpose of this layer is to allow words and characters to learn
from each other before being fed into the self-attention layer of the embedding encoder so that the
self-attention can relate certain important characters to relevant respective words and vice versa.

3 Related Work

As mentioned before, the field of QA used to be dominated by RNN-based models, specifically
ones that used LSTMs to bidirectionally generate encodings like BiDAF [4]. BiDAF introduced the
concept of bidirectional (C2Q and Q2C) attention, where both context and query can learn from each
other to build question-aware context representations and context-aware question representations.
BiDAF models were able to obtain EM scores of around 65 on SQuAD v1.1

Transformers [3] revolutionized the field by delivering much faster and more accurate results through
leveraging the self-attention mechanism. QAnet [1] adapted the transformer to the QA task, and was
able to achieve much higher scores (EM = 82.2) than any RNN/LSTM model on SQuAD v1.1.

Currently, cutting edge QA based models that are able to attain the highest scores on SQuAD v2.0
and other datasets are built upon pre-trained transformers, which start with embeddings obtained by
training over very large corpora of text. Models using pretrained transformers like BERT [5] and
ALBERT [6] are able to acheive remarkable EM scores on SQuAD v2.0 of about 90.

4 Approach

My main approach was to first implement a functional version of the QAnet architecture and then
implement Transformer-XL features on top of that. Since the baseline BiDAF model has the same
overall structure as the QAnet model, I was able to incrementally develop my reimplementation
of QAnet by switching out layers of the baseline model one-by-one. Below are the steps I took in
developing my model.
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Figure 1. An overview of the architecture of QAnet, which is the basic skeleton this model is built
around [1].

Figure 2. My final model implementation, with the convolutional context layer included.

4.1 Baseline

My baseline for this project is the word-embedding-only BiDAF model provided in the default project.
It includes a word embedding layer, an LSTM bidirectional encoder layer, a bidirectional attention
layer, two LSTM bidirectional modeling encoder layers, and an output layer. Further implementation
details can be obtained from the original BiDAF paper [4].

4.2 Convolutional Word and Character Embedding Layer

I expanded upon the baseline by adding in 200-dimensional character level embeddings, which
are initialized randomly and fed through a 2D convolutional layer to learn from each other. I then
concatenate these character embeddings to the word embeddings obtained in the baseline and feed
both through a convolutional layer to change their dimensionality to the hidden size (h = 128) specified
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in the QAnet paper [1]. The joint embeddings are then fed through a 2-layer highway network [7]
before being passed to the encoder. This singular change, with the rest of the baseline model intact,
was enough to motivate a significant 5-point increase in scores across the board (AvNA, F1, and EM),
which will be discussed further in the analysis section.

4.3 Context Layer

I experimented with adding an additional convolutional layer to add additional contextual information
between words and characters, but found that this layer caused the model’s learning to plateau before
going up slowly, the implications of which will be discussed further in the analysis section. While I
still believe there is potential in this layer, since it decreased performance, I ended up removing it
from my final implementation.

4.4 Encoder Blocks

This is the bread and butter of the QAnet [1] architecture. Each block consists of a positional encoder,
several depthwise separable convolutional layers, a self-attention layer, and a feed-forward layer. The
base structure of QAnet is presented on the right below.

The depthwise convolutional layer implementation was obtained from [8].

The positional encoder math was obtained from [9].

I make three modifications to the encoder block in my implementation:

4.4.1 Convolutional feed-forward layer

The original QAnet paper [1] mentions it uses linear layers for some of its feed-forward layers, but
I use only convolutional layers in my encoder blocks. The goal of this change is to allow different
parts of the attention to learn from each other. This convolutional layer has the same architecture as
the convolutional layers at the beginning of the block.

4.4.2 State reuse

At the end of each encoder block, the hidden states of each of its layers are stored within long-term
memory which persists over all the iterations of training. At the next iteration over the next sequence
of inputs, these memories are used in the calculations of the new state and fed together into the
convolutional and self-attention layers. This allows the encoder to build relationships over context
spans larger than the input window size. Given, the value of the hidden states for the s− 1th segment
of the n− 1th layer, he calculation of the nth layer’s hidden states for the sth segment is given by the
following equations:
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[2]

where SG stands for the stop gradient, which lets gradients flow through forward but not backpropa-
gate. This is done so that the gradient for the current function is not backpropagating through to the
previous hidden states. I saw no reason to include long-term state memory for any layer other than
the self-attention layer, so I will only be saving states for those [2].

4.4.3 Relative Positional Encoding

One problem that state reuse introduces is that concatenation results in positional encodings becoming
meaningless. Thus I will only employ relative positional encodings, calculated each iteration, to
represent locational information. Relative positional encoding modifies the state reuse mechanic
when calculating attention by calculating attention for each query, key, value with respect to a
relative encoding matrix R and putting attention values through a positionwise-feed-forward layer to
calcualate the next layer’s state. These modifications are shown below:
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4.5 Bidirectional Attention, Modeling, and Output Layers

While QAnet only uses C2Q and not Q2C for its attention layer, I thought it would be beneficial to
still have query representations learn from context representations. Therefore, I use the bidirectional
attention layer used in the baseline BiDAF model [4]. .

The modeling layer is the same as in the QAnet paper, and consists of three groups of seven encoder
blocks in a row. The parameters for these convolutional layers follow the paper’s guidelines [1]. .

The output layer is the same as in the QAnet paper, and combines inputs from between each group
of modeling layers to produce trainable representations for the start and end pointers [1]. The
probabilities of the starting and ending positions of the answer are modeled as follows, where M0 is
the output after the first modeling group, M1 is the output after the second group, and M2 after the
third:

p1 = MaskedSoftmax(W1[M0;M1]), p
2 = MaskedSoftmax(W2[M0;M2]) [1]

.

5 Experiments

This section contains the following.

5.1 Data

The model will be trained and evaluated on the provided SQuAD 2.0 dev and test sets obtained by
splitting the official dev set in half. The training dataset is the official SQuAD training set and consists
of 129,941 examples, whereas the dev set has 6078 examples. The datasets consist of question,
context, and answer triplets for which the model has to perform the following task: given a query,
determine the start and end pointers marking the boundaries of the correct answer in the context
paragraph. There also exist many questions without an answer, for which the model should return no
answer.

5.2 Evaluation method

The model is evaluated on three metrics: exact match (EM), F1, and answer vs. no answer (AvNA).
They are defined as follows:

EM: Whether the model got the exact start and end of the answer, or successfully predicted that there
was no answer.
F1: A harmonic mean of precision and recall. Precision refers to how much of the predicted answer
is in the actual answer, and recall is the opposite.
AvNA: A special metric designed by the course staff to evaluate how well the model differentiates
between question/context pairs that have answers and ones that do not.

5.3 Experimental details

I mostly used the hyperparameters specified in the original QAnet paper [1]. They are as follows:

L2 weight decay: λ = 3x10−7

Dropout probability: 0.1
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Hidden size: 128
Character embedding size: 200
Encoder layer convolution number: 4
Encoder layer convolution number: 2
Adam beta 1: 0.8
Adam beta 2: 0.999
EMA Decay: 0.999

Similar to the paper, I used a learning rate that warmed up with an inverse exponential increase from
0.0 to 0.001 over the first 1,000 steps, and then remained constant from there. The kernel sizes for
my convolutional layers were set to 1, since I had trouble with higher kernel levels and the sizes
of the embeddings. I trained the baseline and BiDAF + Convolutional Embedding iterations for 10
epochs each, since I noticed the slopes were mostly flat after that, which took about two hours each.
Surprisingly, despite being known for their speed, the transformer based models (base QAnet and
Transformer-XL) took much, much longer to train. I trained both of these for about 30 epochs, which
took between 6 to 8 hours each.

5.4 Results

Figure 3. My final training graphs. The upper orange line is the baseline, the magenta line is
the convolutional embeddings, the red line is the base QAnet, and the lower orange line is the
Transformer-XL.

Model Baseline Conv. Embedding QAnet Transformer-XL

AvNA 64.88 69 64.31 59.2
EM 55.28 59.5 53.44 48.46
F1 58.35 63 56.15 50

NLL 3.04 2.78 3.34 4.07
Num Iterations 1.1M 2.5M 4M 2.7M

Figure 3. My final training scores.

QAnet Test EM/F1 = 51.023/54.052

My models did not perform as well as I expected them to. I exptected QAnet to perform better than
BiDAF across the board, and for Transformer-XL to at least perform as well as QAnet. The two
transformer models’ training curves are not in the desired shape, and take forever to start learning
or, in the case of Transformer-XL, progressively get worse. This suggests some flaw with my
implementation of QAnet since the baseline scores for QAnet are much higher than what I was able
to achieve and I’m utilizing the same hyperparameters as specified in the paper.

The convolutional embedding layer, when paired with the BiDAF model, worked surprisingly well,
raising scores across the board by 4-5 points. With this early success, I continued my approach of
adapting each layer one by one, adding in additional improvements like more convolutions or state
reuse as I went along. My finished model ended up gluing together different parts of both models and
linking together potentially incompatible layers like the BiDAF attention layer or highway encoder
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with the transformer encoder layer. Further discussion of results and suspected problem areas is
included in the subsequent section.

6 Analysis

6.0.1 Training Graphs

Compared to the ideal-looking training curves of the baseline and convolutional embedding models,
the transformer-based models’ curves clearly indicate something inhibiting training, or perhaps
training of the wrong things. What’s interesting is that throughout almost all their iterations, both
transformer models do steadily improve in AvNA, even when the other two scores were not improving
at all. This could indicate that AvNA is easier to train for, or that my own modifications caused the
model to fixate on this distinction. Regardless, neither base QAnet nor Transformer-XL managed to
learn much in terms of EM and F1. Since my learning rate and other related hyperparameters are
all the same as in the QAnet paper, this must be because information is not being passed forward
through the layers in a meaningful way, or that information is not being allowed to backpropagate
through the layers to the areas that need to be impacted the most. Below are some possible reasons
why this may be the case.

6.0.2 Potential Issues

1. Incorrect formation of Q, K, V tensors during self-attention calculation.
In the self-attention layer, to separate out Q, K, and V, I used a linear projection layer to
map the input tensor of shape (batch size, sequence length, hidden size) to a tensor of
shape (batch size, sequence length, 3 * hidden size) so that I could have three different
tensors for my Q, K, and V, each of size hidden size. This implementation makes logical
sense, but I don’t know if it’s exactly what torch’s nn.MultiheadAttention is looking for
since its implementation is behind the scenes. Implementing my own version of multihead
self-attention was a goal of mine, but I had many other issues that I felt should be prioritized
due to time constraints.

2. Too many convolutional layers
When I first successfully implemented my convolutional embedding layer, I was shocked
to find out the extent to which an extra convolutional layer improved my model by so
much. I reasoned that letting different parts of words and sentences learn from each other
as much as possible would lead to the greatest success. As such, I replaced the linear
feed-forward layers in the encoder block with convolutional ones and added an additional
contextual encoding convolutional layer. I found the latter actually prevented training, while
the former didn’t have much of an impact. Perhaps convolving over some of the many
abstract representations of data in the model don’t help it build representations at all but
instead jumble up information that should remain distinct. This includes the convolutional
embedding layer that I built the rest of the model around: just because it worked with the
BiDAF model doesn’t mean it’s well-suited for the QAnet architecture.

3. Transformer-XL
Perhaps the Transformer-XL architecture is not well-suited for QAnet or SQuAD. If the
sequence lengths aren’t too long for a singular input window to process, then there’s no
need for state reuse and I could just be adding on extraneous information that confuses the
model. Indeed, each context paragraph of BiDAF is only about 300 words at most, and I
found that I could simply increase the maximum sequence length in my positional encoder
to be larger than that. Whether or not this had unintended consequences or adequately
solved the problem requires further experimentation. Additionally, I very well could have
misunderstood the convoluted math in the paper and implemented the memory reuse and
relative positional embeddings incorrectly.

4. x.transpose(1,2)
At many points in the model, one layer, such as a layer norm, required its input to be in the
shape (batch size, sequence length, hidden size), while the next, say a 1D convolutional
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layer, required its input to be in the shape (batch size, hidden size, sequence length). This
happened at many points in many forms throughout the model, and I almost seemed to be
transposing the two dimensions back and forth at random. Perhaps there is a way to avoid
so many transformations so information doesn’t get confused as it’s fed through each layer
of the model.

5. Meaningless output
At the end of a run, the model outputs two probabilities: one for the starting index of the
answer, and one for the ending index. This is the same output as the BiDAF model, so after
extracting outputs from each of the three groups of modeling encoder blocks, I fed the logits
through the masked softmax function used by the BiDAF model and hoped for the best.
However, the information could have arrived in the output layer in a very different state than
for the BiDAF model, and so using the same output function on incompatible data might
have produced misleading results.

7 Conclusion

In my work building this model, which in essence is a hybrid of three different models (BiDAF,
QAnet, Transformer-XL), I found that combining different aspects of different models, even if
they’re all beneficial on their own, does not always produce better results. Transformer-XL in
particular does not seem well-suited to this task, as there doesn’t seem to be much use for state reuse
without extremely long context paragraphs, and relative positional encodings would thus only subtract
valuable information from the absolute ones in the base model. Nevertheless, I did successfully
expand upon the BiDAF model with my own convolutional embedding layer with respectable results.
I implemented a functional version of QAnet, which stagnated at first but did end up learning. Given
more epochs and Azure credits, it is very likely its scores would have improved further. Finally,
while my Transformer-XL implementation was unable to perform to standards, I was able to learn
about what unique benefits it offers and when it may or may not be useful. Future work will go into
remedying the limitations of my model; namely, why its learning stagnates for so long and why it is
unable to learn at a sufficient rate.
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