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Abstract

With the increasing importance of conversational Al, search engines, and other
interactive systems, Question Answering has become a critical task to advancing
the state-of-the-art in Natural Language Understanding systems. An important
problem is for these systems to generalize well to new domains with a small
amount of training examples - understanding how to build such systems will
represent a leap of knowledge in our quest for Artificial General Intelligence, and
will allow us to create general-purpose software that adapts on an as-needed basis.

To obtain good out-of-domain generalization performance with fewshot
learning, we propose our model FAME-BERT (Finetune-Augment-Metalearn-
Ensemble DistilIBERT). We recognize and underline the benefits of carefully
crafted learning rates, data augmentation, and ensembling over our base approach
of meta-learning a DistilBERT model. Highlights of our model’s performance
include Rank 1 by EM on the validation leaderboard and Top 5 by EM on the
test leaderboard. On both validation and test sets, our model outperforms the
DistilBERT baseline by a significant margin. Finally, we discuss future directions
of research that are likely to further boost model performance.

1 Key Information to include

* Mentor: Fenglu Hong
 External Collaborators (if you have any): N/A
* Sharing project: N/A

2 Introduction

Question-Answering is one of the critical problems in Natural Language Understanding which acts
as a milestone for us to measure how well NLP systems today can comprehend context and provide
suitable responses. Today, Question-Answering systems are found everywhere: Search engines,
Conversational Al, Medical Software, and even in Major League Baseball [[1]] and health science
(EAGL1). However, most of these systems are domain-specific, i.e. they operate in a given context.
Given the large amount of data available now, with corpuses such as Wikipedia at our disposal, a
natural extension of domain-specific question-answering is to ask whether these models can answer
questions on a new domain with a small amount of training data provided at test time. An example
prompt of such a question and answer is given in Figure I

Meta-learning [22] is a technique that teaches models to “learn how to learn"; more precisely, it focuses
on training models on tasks in a way that makes it easier to generalize to completely new tasks,
sometimes even with drastically different loss functions, where the pre-training knowledge might be
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Question: Why was Tesla returned to Gospic?

Context paragraph: On 24 March 1879, Tesla was returned to Gospic under police guard
for not having a residence permit. On 17 April 1879, Milutin Tesla died at the age of 60 after
contracting an unspecified illness (although some sources say that he died of a stroke). During
that year, Tesla taught a large class of students in his old school, Higher Real Gymnasium, in
Gospic.

Answer: not having a residence permit

Figure 1: Example Prompt & Response

helpful. Keeping this visualization in mind, we believe meta-learning is a good approach for Robust
Question-Answering, with the training tasks being the in-domain datasets and test tasks being the
out-of-domain datasets. Thus, the purpose of this work is to investigate meta-learning solutions for
this problem, and brainstorm ideas that can make these solutions more effective.

To obtain good out-of-domain generalization performance with fewshot learning, we propose our
model FAME-BERT (Finetune Augment Metalearn Ensemble DistilBERT). We recognize and
highlight the benefits of carefully crafted learning rates, data augmentation, and ensembling over our
base approach of meta-learning a DistilBERT model. Our model gives a performance of 53.065 F1
score and 40.314 EM score on the validation leaderboard (Rank 1 by EM) and 60.042 F1 score and
42.959 EM score on the test leaderboard (Top 5 by EM).

3 Related Work

The term “Meta-learning" refers to a variety of methods that guide models to learn how to learn;
We wish for pre-trained models to learn a large number of new, unseen tasks with minimal training
examples and updates. The idea of meta-learning is to have a model that represents a high-level
understanding of a domain, which can easily be fine-tuned with minimal updates on any specific task
with a small amount of new data.

The paper [2] introduces model-agnostic meta-learning, which is the first work that performs meta-
learning without relying on learning rules, updates functions or model architecture.

Suppose we have a pre-trained model that is parameterized by parameter . Meta-learning aims to
fine-tune 6 in a way that allows a small amount of gradient steps to lead to a significant decrease
in loss in a large number of tasks; an illustration of how meta-learning uses the same 6 to quickly
adapt to many tasks can be seen in Figure[2] We talk about more intricate details of meta-learning
algorithms in Appendix [A]
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Figure 2: Illustration of Meta-learning

The paper [3] applies the above methods to Natural Language Understanding tasks, in a bid to show
that meta-learning performs better than multi-task learning in low-resource language understanding
task scenarios. They argue that meta-learning learns a representation that is more unbiased, compared



to multi-task learning representations which are biased towards high-resource languages. They
evaluate the algorithms on the GLUE [4] dataset, which includes a wide range of tasks such as
sentiment analysis, textual entailment, question answering. The authors also try out different ways
of choosing the distribution p(7 ), and claim that the Reptile algorithm with a PPS (Probability
proportional to size of task, as compared to, for example, uniform task sampling) distribution tends to
work the best.

EDA [5]: Easy Data Augmentation techniques are a set of techniques introduced for better generali-
sation on tasks with limited resources. It consists of four operations: synonym replacement, random
insertion, random swap, and random deletion. An example can be seen in Table I} We use these
synonym replacements in both the contexts and questions for better generalisation of our QA model,
so that it doesn’t simply learnt to search for the most word matches in question and context.

[ Operation | Sentence I
None A sad human comedy played out on the back roads of life.
Synonym Replacement | A lamentable human comedy played out on the backward roads of life.
Random Insertion A sad human comedy played out on funniness the back roads of life.
Random Swap A sad human comedy played out on roads back the of life.
Random Deletion A sad human out on the roads of life.

Table 1: EDA Techniques

4 Approach

4.1 Baseline

For the baseline, we use a DistilBERT model [[6] given to us as part of the project handout, which is a
smaller version of BERT, a pre-trained model. We train it for 3 epochs on the in-domain train data
and do not finetune on the downstream out-of-domain tasks.

4.2 Our model
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Figure 3: Training Pipeline for FAME-BERT

Our FAME-BERT architecture can be found in Figure [3] Our Training pipeline consists of three
major parts:

1. Initial training: In this stage we perform initial training of a pretrained DistilBERT model
on the in-domain train datasets of the Question-Answering task. We may either perform



standard training or Meta-update based training, or we may do one on top of the other (for
example, a single epoch of MAML over a few epochs of baseline training).

2. Fine-tuning: We perform training on the OOD train datasets, possibly augment them using
synonym replacement, and tune Learning rates and number of epochs for best performance
on a separately carved out validation dataset.

3. Ensembling: We run fine-tuning across multiple seeds and combine the predictions using a
majority vote.

Apart from the starter code, we designed the remaining training pipeline ourselves, and implemented
Meta-learning algorithms for scratch for our use case. We also designed interfaces for individual
learning rates and ensembling of predictions. We adapted code from the original EDA paperﬂto fit
to our use case.

5 Experiments

5.1 Data

We use 6 datasets overall, 3 for the training phase, and 3 for the evaluation phase: Three large
in-domain reading comprehension datasets (Natural Questions [[7]], NewsQA [8] and SQuAD [9])
each with 50000 examples, are used as training datasets and three small out-of-domain datasets
(RelationExtraction [[10], DuoRC [[11], RACE [12]) each with only 127 training examples, are used
as the fine-tuning datasets. Final evaluation is done on the OOD validation & test datasets. Further
details on these datasets are given in Figure 4]

Dataset Question Source Passage Source Train dev Test

in-domain datasets

SQuAD [5] Crowdsourced Wikipedia 50000 10,507 -

NewsQA [7] Crowdsourced News articles 50000 4,212 -

Natural Questions [6] Search logs Wikipedia 50000 12,836 -
oo-domain datasets

DuoRC [9] Crowdsourced Movie reviews 127 126 1248

RACE [10] Teachers Examinations 127 128 419

RelationExtraction [11]  Synthetic Wikipedia 127 128 2693

Figure 4: Dataset details

5.2 Evaluation method
EM (Exact Match) and F1 scores are used as quantitative evaluation metrics, defined as follows:

* EM score: This is a binary measure of whether the answer is correct. The intuition behind
EM is as follows: “Is the given answer exactly the correct one based on the provided
answer?"

« F1 score: The F1 score is defined as 2Xprecisionxrecall pa intyition behind F1 is as
precision+recall

follows: “How close is the given answer to the provided answer?"

Three human-provided answers are present for each question, and the maximum F1/EM score is
taken across these. Then scores are averaged (weighted averaging) over all three evaluation datasets
to get the final reported scores.



H Model Name Model Description Train epochs  Train time (hours) H

My DistilBERT baseline, no finetuning 3 4
My DistilBERT baseline with EDA fine-tuning 10 13
Ms First-order MAML 10 17
My Second-order MAML on M, 1 5

Table 2: Model descriptions

5.3 [Experimental details

The models we choose to compare are as described in Table[2] with the training times provided there
as well. The following configurations are common across models in the training phase:

¢ Number of model parameters: (Base DistilBERT parameters - 66 million)
* Learning rate: AdamW optimizer with learning rate = 3 x 107>

* For Meta-learning algorithms, the inner-loop optimizer & learning rate (i.e, the 6; value) is
set to be an SGD optimizer with a learning rate of 3 x 10~3; this was chosen because a ratio
of 100 : 1 between inner and outer loop values is common practice in some implementations
we looked afl

* Batch size is 16 for all training steps, and 4 for all fine-tuning steps. The number of epochs
trained for depends on the model, as given in Table 2]

* We introduce 2 new training examples for each OOD training example when using data
augmentation. The probability of each word being replaced by its synonym is set to be 20%.

¢ For submission on the test leaderboard, we ensembled over 10 seeds.

5.4 Preliminary Results
Based on Preliminary findings, we had the following observations:

* EDA does not seem to help models during initial training. This is likely because we did not
find the correct hyperparameters for EDA to work well; since EDA causes training times to
be about 3 times longer (and since the model losses continue to look reasonable for a small
subset of data), we were unable to perform a complete hyperparameter search due to heavy
compute. We realized that this was too much to ask for, and instead focused our attention on
tuning hyperparameters for EDA usage in fine-tuning, which paid off.

* We noted that a single model had vastly different performances v/s number of fine-tuning
epochs on the three different datasets. Moreover, the fine-tuning was not very stable, as ob-
served in Figure[f] We realized this was due using a common learning rate despite immense
diversity in the characteristics of the underlying data; indeed, after tuning the learning rate
and training epochs for datasets individually, we obtained much better performance [5] This
is in line with the ideas from [[13]], which talks about the instability of training meta-learning
algorithms.

» From the paper [13], we tried to implement the idea of performing a single stage of second-
order MAML on top of a baseline (re-training), which the paper claims to be better and leads
to more stable training. This leads to our proposed model M. Unfortunately, our M, does
not end up performing too well; again, this is likely due to lack of a hyperparameter sweep,
as we were limited by the compute. A second order gradient is quite heavy in computation;
With just a single gradient step in the inner-loop, this takes 4.5 hours per epoch to traitﬂ

Based on the observations in this subsection, we made many changes to our models. Our detailed
analysis in section [6] shows proof via ablation that each of these changes helped.

!Code is adapted from here
2For example, this one
*We implement Second Order MAML based on the library [14] from Facebook Research


https://github.com/jasonwei20/eda_nlp
https://github.com/phlippe/uvadlc_notebooks/blob/master/docs/tutorial_notebooks/tutorial16/Meta_Learning.ipynb

5.5 Final Results

Model Comparision
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Figure 5: EM and F1 on dev set v/s finetuning steps across models
H Model Name EDA devFl devEM TestF1 Test EM H
My No 46.512 31.675 59.187*  40.28*
Moy No 51.995 37.173 - -
My Yes 53.020 39.791 59.679 42.156
M3 No 52.128 39.529  59.347 42.431
M3 Yes 51.276  37.958 - -
My No 46.736 33.770 - -
Ensemble(Mso, M3) Yes 53.065 40.314 60.042 42.959
Leaderboard rank (as of writing) - 6 1 11 5

Table 3: Model scores

Our final results can be found in Table (3] and plots for performance of various models on the dev set
can be found in Figure[5} Based on our performance on the dev leaderboard, we submitted M +
EDA, and M3 on the test leaderboard. For each of the test submissions, instead of using a prediction
of one model, we used an ensemble of models fine-tuned using different seeds. Fine-tuning is a very
cheap operation and so this gave us the benefit of getting a set of diverse models and not being forced
to use a bad seed. The performance of the ensemble being better than the underlying models on both
the dev and test sets was quite surprising, as the ensemble is similar to an averaging metric, and we
discuss the possible reasons behind this in next section.

Our final test submission was an ensemble model of Mo, M3, which performs best out of all of
our submissions, achieving a Test EM score of 42.959 and a Test F1 score of 60.042, with a dev
leaderboard rank 1 and test leaderboard rank in top 5 wrt EM at time of writing. The cross-model
ensembling criteria used here was motivated by the diverse performance characteristics of My, M3
on different data-sets.

We did succeed in improving the EM scores quite a bit over the baseline, and one of the major reasons
for the success was tuning our learning rates for each datasets when doing meta-learning. While the
fact that our dev rank is better than our test rank suggests that we likely overfit the dev data, our dev
scores were much lower than test scores, which makes the case that either the dev set was not a good
representative sample of the test set or that we didn’t overfit a lot; we believe the former to be the
case.
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Figure 6: Learning rate instability across datasets

6 Analysis

6.1 Effect of Learning Rates

In Figure[f] we observe the instability of learning rates during fine-tuning across datasets. The correct
learning rates, for instance, 3 x 10~ for DuRoC (Figure @b]) and RACE (Figure @C]), and 3 x 107°
for RelationExtraction (Figure @d]), are about 100x apart, and if we set them appropriately then the
training is much more stable as evidenced by Figure[5] This suggests that we should investigate
optimizer variants that can automatically handle this vast diversity in learning rates across datasets.
We also realised that there is a lot of scope to improve our model’s predictions if we could fit learning
rates for each individual dataset during not just fine-tuning but also during initial training, something
that we couldn’t explore due to long training times and limited compute.

6.2 OOD Dataset Variance

We found that no matter what algorithm we used, there was a lot of variance in terms of our
performance on the out of domain datasets. While we performed well on RelationExtraction, the
performance of meta-learning on RACE in fact fell in terms of our metric scores, as we increased
the number of epochs spent in fine-tuning as shown in Figure [/} This was very counter-intuitive,
and we noticed a similar pattern in the baseline model. There is a lot of headroom for improvement
here as witnessed by our best performing Ensemble(M3, M3) model that leverages best of both
worlds by combining better performance of M (baseline) on RACE and better performance of M3
(meta-learning) on RelationExtraction and DuoRC by combining them through a majority voting
mechanism.

6.3 Data Augmentation

After choosing the best learning rate per dataset, we fine-tuned our models, and saw that they had a
relative ordering wherein the M3 was only slightly better than My model when used in conjunction
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Figure 7: EM and F1 on dev set v/s finetuning steps for M, across datasets

with Easy Data Augmentation, as seen in[3] However, EDA didn’t seem to help meta learning (M3)
which was a bit surprising. Due to limited time we weren’t able to identify the root cause with
certainty, but we suspect not choosing the right hyperparameters for data augmentation, and presence
of data augmentation during fine-tuning but lack of data augmentation during training steps, to be the
reasons behind failure of EDA in improving performance of meta-learned models.

6.4 Ensemble Characteristics

We note that combining predictions across 5 seeds using majority voting for the same model makes a
significant difference. To demonstrate this, we show the performance of 5 models without ensembling,
and demonstrate the performance boost with ensembling in Table 4]

H Model Fl1 EM H
Average of 5 Seeds 51.11 £0.24  38.74 £ 0.29
Ensemble (Majority Vote) 52.073 38.743

Table 4: Ensemble performance

When we fine-tuned a set of 5 ensemble models starting from different seeds, 88.2% of the time
their predictions were identical, and 99% of the times we had a clear majority structure in the vote
with more than 50% of the models giving identical outputs. Also, none of the individual models was
in a position that it was always correct, i.e., each model’s predictions were improved upon by the
ensemble and no one underlying model was a clear winner. Although ensembling kept EM scores for
the ensemble close to the mean of the underlying models, shown in Table[d] the F1 scores for the
ensemble were upto 4 standard deviations higher than the mean of the F1 scores of the underlying
models, which is a significant improvement.

7 Conclusion

In this project, we find that meta-learning can indeed outperform vanilla gradient descent based
learning methods. We also see the power of ensembling when using the same model across multiple
datasets. Using our models, we were able to beat the baseline model by a significant margin and
achieve a performance of 53.065 F1 score and 40.314 EM score on the validation leaderboard (Rank
1 by EM) and 60.042 F1 score and 42.959 EM score on the test leaderboard (Top 5 by EM).

There are still a multitude of methods that one could try for future research in this direction, some
of which are: PPS sampling by augmenting the in-domain datasets with the OOD datasets and
importance sampling, apart from the three main methods that we could not investigate in full detail:
learning rate grid search during training, data augmentation hyperparameter search for meta-learning,
and stable second-order meta-learning training. We hope these rich plethora of ideas that we leave,
inspire future readers to implement them and further improve their models.
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A Appendix A

The goal of meta-learning is teaching models to learn how to learn. Concretely, assume that we have
a (possibly diverse) set of tasks 7, where the output for the 7*" task is given by fj, the loss function
being given as £;. We are also given a probability distribution for sampling over these tasks p(7).
Model-agnostic meta learning works as follows:

1. Consider a pre-trained model M with parameters 6, which has a large corpus of knowledge,
such as DistilBERT.

2. We update the parameters 6 to be a good representation to easily learn new tasks; that is, 6
is “sensitive” to new updates. This is called the meta-update step.

3. Optionally, we may perform re-training (for example, training DistilBERT on Question-
Answering and re-training with meta-learning) which may help with training stability [[13].

4. During test time, we fine-tune 6 on the target task that has a small number of training
examples (few-shot learning).

The crucial part of meta-learning is the meta-update step. In this step, we wish 6 to satisfy

Inein Z )£z (f@i)v

Tir~p(T

where 6; = 0 — aVL;(fs) is the result of applying a single gradient step on the i*”* task (we can also
apply multiple gradient steps and meta-learn «; this does not change the core idea). This minimization
forces 6 to be a good central representation that learns well across tasks 7, and thus we may expect
it to learn quickly on a new, unseen task. To perform this minimization, [2] suggests the MAML
algorithm which performs the stochastic gradient update:

0 0—BVe Y Lil(fo)

Ti~p(T)

Note that this algorithm involves the gradient through a gradient; 0; itself is a gradient descent update
on . This is an expensive operation (indeed, in section [5|we note that it makes training around 3 x
slower); to mitigate this, [2] also proposes a first-order approximation to this, called First-Order
MAML. To address this issue of computation time in another manner, the paper [15] presents Reptile,
which provides an alternate linear update method for 6.
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