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Abstract

Question answering (QA) is one of the hardest challenges in NLP. Unlike
information retrieval tasks like named-entity recognition, QA requires a model to
develop deep syntactic and semantic understanding of text as well as efficiently
represent relationships between context and query. In our project, we are given
the SQuAD 2.0 dataset (Stanford Question Answering Dataset) [5] and a baseline
that implements BiDAF model (Bidirectional Attention Flow) with word-level
embeddings. Our goal is experiment with new deep learning techniques that can
improve over the baseline. For this project, we first improved the Baseline BiDAF
model by adding Character-Level Embeddings. Then we implemented the QANet
architecture and performed analysis on how the complexity of various modules
of the system affect its performance. We also proposed a new architecture for the
QANet Output Layer which helped to improve the model performance. Our best
model QANet-Ensemble achieves F1 score of 71.995 and EM score of 68.678 on
the Dev leaderboard and F1 score of 69.943 and EM score of 66.712 on the test
leaderboard, placing us at the 6th position on the test leaderboard. Our submissions
can be found under the name squad_trainers.

1 Introduction

In question answering a model is given a context paragraph and a question as input. The goal is to
select a span from the context that answers the question correctly. In recent years, this has become
an important benchmark for evaluating the capability of deep learning architectures and methods
to understand text. Before BERT started dominating this area, BiDAF and QANet were two very
important models for solving the question answering task. The BiDAF model (Bidirectional Attention
Flow) is a closed-domain, extractive Q&A model that can only answer factoid questions. It has two
key designs. The first one is a recurrent model to process sequential inputs. The second one is an
attention component to model long-term interactions [7]. The QANet uses the same layered design
as the BiDAF model but improves the performance in both accuracy and speed. The key difference
between BiDAF and QANet is their encoder blocks. Rather than using a bidirectional LSTM (Long
Short-term Memory) in the encoder layer to incorporate temporal dependencies between timesteps of
the embedding layer’s output like in BiDAF, the QANet replaces them entirely with self-attention
and convolution. The convolutions model local interactions and the self-attention models global
interaction[10].

2 Related Work

BiDAF [7] introduces the idea of bi-directional attention that helps to model relationships between
context and query. BiDAF is a multi-stage hierarchical process that represents the context at
different levels of granularity and uses bi-directional attention flow to obtain a query-aware context
representation. It has two key components: a recurrent model to process sequential inputs, and an
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attention component to understand long-term interactions. The core idea of bidirectional flow is that
attention should flow in both directions between the query and context.

The Transformer model [9] introduced multi-headed self-attention as an alternative to the recurrence
commonly used in encoder-decoder architectures. QANet [10] adapts ideas from the Transformer
and tries to tackle the question answering by applying self-attention and convolutions only. The
motivation of this work is that Convolutions perform well at capturing local context while attention
captures global relationships in text. By combining both convolutions and attention, QANet achieves
3 to 13 times faster training time and 4 to 9 times faster inference time, while achieving similar
accuracy to previous recurrent models on the SQuAD1.0 dataset [6]. Since QANet has not been
applied to SQuAD2.0 and SQuAD2.0 has unanswerable questions unlike SQuAD1.0 we believe that
our implemented models will provide a good baseline for QANet’s performance on unanswerable
questions.

One drawback of QANet is that it does not predict the end token based on the start token, which
we think could improve the accuracy of the predictions. We propose a conditional output layer for
QANet that could yield better results by taking the predicted start of the answer span into account
while predicting the end of the span.

3 Approach

3.1 BiDAF

BiDAF Baseline: We use the BiDAF model implementation provided by CS224n staff as our baseline.
This implementation differs from the original BiDAF network suggested by [7] in that it does not
include the character embedding layer. In the embedding layer the model looks up pre-trained word
embeddings for both the context and question based on the word or character index, and then applies
a two-layer highway network to improve model robustness. In the encoder layer the model applies
a bidirectional LSTM to incorporate temporal dependencies between time-steps of the embedding
layer’s output. The model uses the attention layer to learn context-to-query and query-to-context
attention. In the modeling layer the model refines the sequence of vectors after the attention layer and
integrates temporal information between context representations conditioned on the question. Lastly,
in the output layer produces a vector of probabilities corresponding to each position in the context.

BiDAF + Character Level Embedding: We add character-level embeddings proposed in the original
BiDAF model [7], but was left out of the baseline model. Character-level embeddings allow the
model to condition on morphology and handle out-of-vocabulary words better. The character level
embedding of each word is obtained using a Convolutional Neural Network (CNN)[4]. The characters
are first embedded into vectors, which are 1D inputs to a CNN. The outputs of the CNN are max-
pooled over the entire width to obtain a fixed-size vector for each word . We experiment with two
primary variations of character embedding:

• 1 Layer Char-CNN - We apply one convolutional layer with 50 (CharEmbed-50D) or 100
filters (CharEmbed-100D) and kernel size of 3. The output of this layer is the final character
embedding.

• 2 Layers Char-CNN - We apply two convolutional layers each with 100 filters and kernel
size of 3 and 5 to get CharEmbed-200D. The output of these two layers are concatenated to
obtain the final character embedding.

We modify the input embedding layer, which takes as input word and character indexes of the
question and context words and transforms them into distributed embedding vectors. We use Glove-
300 Dimensional word embeddings. For character embeddings, we use the same methodology as
described in the BiDAF with CharEmbedding model. The dimensions of the word embeddings
and character embeddings are dword = 300 and dchar = 200 respectively. The word and character
embeddings are then concatenated to form a vector of dimension dembedtotal = 500. The embeddings
are then reduced using a 1-dimensional convolution to the input size of the model dmodel = 128 and
then fed into a Highway Network [8].
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Figure 1: Original QANet Architecture

3.2 QANet

The QANet model has five layers: input embedding, embedding encoder, context-query attention,
model encoder, and output [10]. Since some of these layers are quite similar to the original BiDAF
model, we reuse implementations of those layers with slight modifications. QANet’s encoder block,
however, is quite different from the BiDAF encoder layer and is more similar to the Transformer ([9])
in terms of applying positional encodings, residual connections, layer normalization, self-attention
and feed-foward sub-layers. We implement the encoder block as described in the original QANet
architecture from scratch.

Input Embedding Layer: This layer is similar to the input embedding layer of section 3.1. We adopt
the standard techniques to obtain the embedding by concatenating the word-level embedding and the
character-level embedding. The exact details of the word-level and character-level embeddings can
found in section 3.1. We also adopt a two-layer highway network on top of this representation.

Embedding Encoder Block The core component of QANet is the encoder block. We implement the
encoder block proposed by [10] and shown in Figure 1. It consists of convolution-layers, followed by
a self-attention-layer and a feed-forward-layer. We use 2 convolutional layers with kernel size 7 in
our implementation. For each of these layers we also implement layer normalization to stabilize the
hidden state dynamics and residual connections for improved gradient flow through the network. We
use Depthwise separable convolutions in the convolutional layers because it is memory efficient and
can generalization better [10]. We adopt the multi-head attention mechanism for the self-attention
layer. For each query, the multi-head attention computes a weighted sum of all the positions, or keys,
in the input based on the similarity between the query and key, which is measured using a dot product
[10]. The input of the encoder layer is first mapped to a dimension of 128 by a one-dimensional
convolution. The output of this layer also has dimension 128.

Context-Query Attention This layer is similar to the context-query attention layer in BiDAF. Its
responsibility is in linking and fusing information from the context and the query words. Here, we
need to compute the similarity matrix, which contains a score for each pair of context and question
hidden states. We compute attentions in two directions: from context to query as well as from query
to context. The context-to-query attention signifies which query words are most relevant to each
context word. The query-to-context attention signifies which context words have the closest similarity
to one of the query words and are hence critical for answering the query. [10][7]

Model Encoder Layer The model encoder layer uses the same encoder block as the embedding
encoder layer. However, instead of one encoder block, this layer has 3 stacks of 7 encoder blocks.
The encoder blocks share weights. [10].

Output layer The output layer is task-specific. Each example in SQuAD is labeled with a span in the
context containing the answer. Let M0, M1, and M2 denote the outputs of the three model encoder
stacks. QANet computes the probability of each position in the context being the start and end
position of the answer span as: pstart = softmax(W1[M0;M1]) and pend = softmax(W2[M0;M2]),
where W1 and W2 are two trainable variables [10].
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3.3 QANet Extensions

Conditional Output Inspired by work on conditional output in [2] and BIDAF output, we
experimented with the output layer of QANet. We implement an output layer in which the probability
of prediction of end token is influenced by the start token prediction. The results can be found under
the name QANet-Conditional-Output in the Experiment Results section. The equations defining the
architecture can be seen below 3.3.

A = W0[M0;M1]

B = W1[M0;M2]

pstart = softmax(W2(A))

pend = softmax(W3[A;B])

Conditional Output with Extra Attention In addition to the conditional output layer from the
previous section, we also observed that the BiDAF output not only took the input of the modelling
layers but also took the input from the attention layer directly for the output prediction. This is
our original contribution on experimenting with adding direct attention connections along with
conditional dependence in the output layer. The architecture can be seen in 2 and equations can be
found below 3.3. pstart and pend remain the same as above.

A = W0[M0;M1;CQAtt]

B = W1[M0;M2;CQAtt]

Figure 2: QANet-ExtraAttentionInOutput Architecture

4 Experiments

4.1 Data

We train and test our models on a slightly modified Stanford Question Answering Dataset
(SQuAD2.0), which has around 150, 000 questions with about half of the questions unanswerable
given the context. A question answering model predicts a span of the context that answers the
question, or predicts "no answer". Every answerable SQuAD question has three human-generated
answers provided. The training split has 129, 941 examples. The dev set we use is created by selecting
roughly half of the official SQuAD2.0 dev set randomly and has 6078 examples. The test set has
5915 examples, which includes the official SQuAD test set and the remaining examples from the
official dev set.[1].
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4.2 Evaluation method

We evaluate our model based on the EM and F1 scores, which are the official SQuAD evaluation
metrics. The EM score stands for Exact Match, which is a binary measure of whether the system
output matches the ground truth answer exactly. The F1 score is the harmonic mean of precision and
recall.

4.3 Experimental details

In the training phase, all experiments were run for 3 million iterations or 30 epochs. A full training run
takes around 15 hours. In the evaluation phase, the number of steps between successive evaluations is
50000. The dropout rate for the CharEmbed layer is 0.05. For all the other layers, the dropout rate is
0.1. We use a batch size of 24 because the VM we use from Microsoft Azure cannot handle batch
size larger than this. We use a learning rate of 0.001 with an exponential warm up of 1000 steps. We
have an ADAM optimizer with β1 = 0.8, β2 = 0.999, ϵ = 10−7 and weight decay rate of 5 ∗ 10−8.
We apply an exponential moving average of parameters with a decay rate of 0.9999. The number
of attention heads is either 4 or 8 depedning on our experiment. The dimension of the Convolution
layers in the Encoder Blocks is 128. The size of char vectors is 64. The size of GloVe word vectors
to use is 300. The number of sub-processes to use per data loader is 4. We implement our model in
Python. For training, we have the Standard NC6s v3 with 6 vcpus and 112 GiB memory provided by
Microsoft Azure. These VMs are powered by NVIDIA Tesla V100 GPUs. These GPUs can provide
1.5x the computational performance of the NCv2-series.

Model Complexity and Layers: We experimented with the following configurations of QANet:

• No. of Convolutional Layers: In QANet-Lite we used 2 Conv layers in the Embedding
Encoder block and 1 Conv layer in the Modelling Encoder blocks. For all other models, we
used 4 layers in Embedding Encoders and 2 layers in Modeling encoders.

• No. of Encoder Blocks: We experimented with using 5 and 7 encoder blocks in the
Modeling encoder layers. The results can be seen in the Results table. 1

• No. of Heads in Self Attention: We experimented with using 1,4,8 Self Attention heads.
Further analysis on the effects of these is present in the Analysis section.

Architecture Extensions: We experimented with two new architectures for the Output layer of
QANet (as mentioned in Section 3.3). The resultant models are QANet-Conditional-Output, QANet-
XtraAtt and QANet-CharEmbed200D-Xtra-Att. The last model QANet-CharEmbed200D-Xtra-Att
has 200D CharEmbeddings as well as opposed to all other QANet models we trained which has 128
dimensional Char Embeddings.

Ensemble: We performed an ensemble of all 9 QANet variants in Table 1 using the majority-
voting and weighted-average (based on F1 score) technique. The results produced through the
weighted-average technique was our best performing model on the dev set.

4.4 Regularization and HyperParameter Tuning

Our initial iterations of the QANet model have seen the training line flat-lined and even underperform
the baseline model. This is most likely because, in our initial implementation of the Encoder Block,
we were not using dropout as aggressively as recommended in the training details section of the
QANet paper: "We additionally use dropout on word, character embeddings and between layers,
where the word and character dropout rates are 0.1 and 0.05 respectively, and the dropout rate between
every two layers is 0.1" [10]. After adding aggressive dropout, the performance improved.

4.5 Results

Our basic QANet architecture achieves 7% improvement over the baseline. Through further
experimentation we arrived at QANet-Ensemble, which is our best model and obtains 10.66%
improvement over the baseline. The results can be seen in Table 1. We have the following observations
from our experimentation:
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Model Dev Loss F1 EM AvNA

Baseline 02.96 61.33 58.24 67.87
BiDAF-200D-CharEmbed 02.82 66.68 63.28 72.69

QANet-Lite 02.96 68.25 64.75 74.91
QANet-1-AttHeads-7-Encoders 02.64 67.95 64.78 74.14
QANet-4-AttHeads-5-Encoders 02.69 68.22 64.48 74.54
QANet-4-AttHeads-7-Encoders 02.70 68.52 65.05 74.79
QANet-8-AttHeads-5-Encoders 02.83 68.38 64.49 74.81
QANet-8-AttHeads-7-Encoders 02.75 68.39 64.46 74.83

QANet-Conditional-Output 02.82 67.09 63.75 73.65
QANet-Xtra-Att 02.62 68.62 65.32 74.59

QANet-CharEmbed200D-Xtra-Att 02.79 69.76 66.54 75.82
QANet-Ensemble 02.82 71.99 68.68 77.21

Table 1: Experiment Results

Adding character embeddings to baseline model improves the F1 score by 5.35%. Character
embeddings increases the model’s effectiveness at handling out-of-vocabulary words by capturing
the morphological structure. QANet-Lite, our simplest version of QANet with 4 attention heads, 5
encoder blocks in modeling layer, 2 convolution layers in embedding encoders and 1 convolution
layer in modeling encoder outperforms BIDAF with included character embeddings. We attribute
this improvement to the Transformer-like architecture of QANet which also includes the multihead
self-attention.

Increasing the number of attention heads or number of blocks in encoder layer improves performance
sightly, but not yield significant gains (about 0.4% only). This has also been observed in some
previous works [2].

Adding the extra attention input helped to achieve a slight improvement in performance(0.1 % gain
in F1 score). Again we had expected a higher gains, as we believed that the context-query attention
layer has the most information about the correlation between the context and the query words and
feeding this directly to the output layers, should help the model make better predictions. Further
analysis on this can be found in section 5.

Increasing the CharEmbedding dimension from 128 to 200 for our final model QANet-
CharEmbed200D-Xtra-Att obtains highest score improvements among all our experiments on QANet.
This is expected since character embeddings capture morphological structure of words and increasing
their dimensionality allows to capture more information at the embedding layer. This also improves
the modelling capacity of the layers higher up in the network.

Overall, our QANet Ensemble model outperforms all other models that we experiment with. The
QANet ensemble uses information from several QANet predictions and can take advantage of the
strengths of each variant while dampening their drawbacks.

4.5.1 Leaderboard Results

Our best model QANet-Ensemble achieves F1 score of 71.995 and EM score of 68.678 on the Dev
leaderboard and F1 score of 69.943 and EM score of 66.712 on the test leaderboard.The difference
between Dev and Test accuracy can be attributed to a slight difference in the data distribution. Also it
might be due to a slight overfitting on the Dev dataset due to the heavy hyperparameter tuning based
on the Dev dataset performance.

5 Analysis

5.1 Performance by Question type

Figure 3 demonstrates that among the different question types, our models performs the worst on
"why" questions. "Why" questions require logical reasoning and deeper semantic understanding
of the context. This is unlike "who" questions, which require the model to simply identify entities
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Figure 3: F1 score comparison with Baseline across various question types

in the context. "Reasoning-Driven" QA techniques [3] along with QANet might help to improve
performance here.

5.2 Effect of Conditional Dependence in Output

Adding Conditional Dependence from Start to End predictions impacted the model performance
negatively. We attribute this to the fact that we added extra input to the End Prediction output layer
without adding any regularization such as Dropout. This lead to overfitting on the Training set and
impacted the Dev performance negatively. Due to time constraint, we couldnt experiment with adding
regularization to this layer.

5.3 Effect of XtraAttention

Extra attention improved the performance of our in the QANet-XtraAtt model, but not as significantly
as we expected. The lower gain in performance can be attributed to the architecture of the encoder
blocks. The encoder blocks have residual connections that help to stabilize the training. The residual
connections present in the modelling encoder block, helped the model to "remember" the context-
query attention all through to the output layer. Hence adding more attention, though helped to add
some more information to the output layer, but most of the information it added, was already being
fed to the output layer through the residual connections, hence adding more of the same information,
did not result in a significant change.

5.4 Effect of Number of Heads in Self Attention

Figure 4: F1 score based on varying number of heads in Self Attention

Figure 4 shows how the F1 score changes based on the number of heads in the Self Attention
layer against the Context Length. We can see that all the QANet models significantly outperform
the baseline. In addition, the model with the highest number of attention heads (8), performs the
best.There is a siginificant difference between 1 and 4 attention heads, but the same is not observed
for 4 vs 8 heads. This makes us feel that given our dataset, 4 attention heads does a good job of
capturing the context dependencies.
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5.5 Exploration of individual questions

Figure 5: Baseline model predicts an answer when the ground-truth is "no answer": The model understands the
question and knows what to look for probably with the help of context-to-query attention. But is fails to make a
well-informed prediction based on deeper semantic understanding of the context.

Figure 6: QANet predicts an answer when there is no answer: The QANet model fails to gain an understanding
of the use of commas to separate phrases. It assumes that Sybilla of Normandy introduces Normans and Norman
culture to Scotland just because the two phrases appear together, but fails to understand how the use of the
comma has effects on the semantics of the sentence. This might also show that the self-attention span of the
model may not be large enough.

Figure 7: QANet ensemble predicts wrong answer span: The model fails to recognize the difficult syntax used
in this sentence. The sentence containing the answer span is "... no French regular army troops were stationed in
North America, and few British troops." The model correctly identifies the the sentence containing the answer
span, but since the answer is placed in a phrase after a phrase that could have a standalone meaning, the model
finds it difficult to identify the correct answer. This might also demnstrate that for "how" questions, the model is
not paying much attention to named entities such as "British" or "French."

We look through some of our model’s predictions and try to identify common sources of error to get
a better sense of where our model is making mistakes.

In Figure 5, 8 and 9 we notice that the context-to-query and query-to-context attention of the BiDAF
baseline performs well. The model is able to identify relevant spans from the context, but lacks
semantic understanding of the context and sometimes to question to make the correct prediction.

In Figure 6, 10 and 11 we notice that the QANet model does a better job at developing a semantic
understanding of both the context and query, but it still fails to understand difficult syntax and
sentence structures.

In Figure 7, 12 and 13 show mistakes made by the ensemble model. Surprisingly, even though
the ensemble model performs much better than the standalone QANet models, it tends to make
similar mistakes. It is apparent that some of the syntactical shortcomings of standalone QANets are
propagated on to the ensembles.

6 Conclusion

From the analysis and experiments above, we can draw the following conclusions. First, increasing
complexity of QANet encoder blocks by increasing the number of attention heads or number of
encoder blocks does not improve performance significantly on the SQuAD2.0 dataset. Second,
increasing complexity of other parts of the model, including features like character-embedding
dimension and changing the output layer architecture are key factors in the performance improvements

8



achieved by our models. Third, ensembling helps to produce effective models that attain 2.23 %
F1 score gain over our single best model as it reduces the variance and feature noise from the base
predictors. Future work could involve investigating whether our models achieves similar performance
on other the datasets such as TriviaQA as well as investigating effects the back-translation data
augmentation technique utilised by the original QANet [10] on our models.
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Figure 9: Baseline model predicts answer different from the ground-truth: Granted that the question is
ambiguous, this example shows that the model has developed some semantic understanding of phrases such as
"in what is now." This question is quite difficult compared to some of the other questions we analyse.

Figure 10: QANet predicts "no answer’ when an answer exists: Once again QANet fails to understand the
meaning of a sentence because of the use of complicated syntax, commas and semi-colons.

Figure 11: QANet predicts wrong answer: The model makes a very severe mistake. It does not seem to have a
good understanding of what phrases in the question such as "the group" is referring to or the meaning of the
phrase "former Huguenot". Instead it focuses on finding the name of a name, probably based on the "what"
phrase in the question.

Figure 12: QANet ensemble predicts and answer when no answer exists: The model is able to identify that
there William the Silent is related to Louise de Colgny, but is unable to decipher that Louise is not William’s
father. Here we see the model fail to analyse the model semantically under the stress of complicated syntax and
information.
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Figure 13: QANet ensemble predict "no answer" when an answer exists: The model is confused because
"Scottish Parliament" is abbreviated to "SP" in the question.

Figure 14: Plot of the dev and training loss, and EM and F1 scores for our models
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