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Abstract

In this project, we aim to build a robust question answering system that can
adapt to out-of-domain datasets. A single network may overfit to the superficial
correlation in the training distribution, but with a meaningful number of expert
sub-networks, a gating network that selects a sparse combination of experts for
each input, and careful balance on the importance of expert sub-networks, the
Mixture-of-Experts (MoE) model allows us to train a multi-task learner that can
be generalized to out-of-domain datasets. We also explore the possibility of
bringing the MoE layers up to the middle of the DistilBERT [1] and replacing the
dense feed forward network with a sparsely-activated switch FFN layers, similar
to the Switch Transformer [2] architecture, which simplifies the MoE routing
algorithm with reduced communication and computational costs. In addition to
model architectures, we explore techniques of data augmentation including Easy
Data Augmentation (EDA) and back translation, to create more meaningful variance
among the small out-of-domain training data, therefore boost the performance and
robustness of our models. In this report we show that our combination of best
architecture and data augmentation techniques achieves a 53.477 F1 score in the
out-of-domain evaluation, which is a 9.52% performance gain over the baseline. On
the final test set, we reported a higher 59.506 F1 and 41.651 EM. We successfully
demonstrate the effectiveness of Mixture-of-Expert architecture in a Robust QA
task.

1 Key Information to include

• Mentor: Christopher Wolff

• External Collaborators (if you have any): None

• Sharing project: No

2 Introduction

In the task of question answering (QA), a model will be given a question as input, together with a
long paragraph as context. It is expected to output an answer to the question. There are a wide variety
of question types, including why, what, how, fact-based, semantic-based, etc. Specifically for our
task, the model needs to select a span of text (starting and ending indexes) from the context paragraph
as an answer to the question, if the question is answerable, and output N/A otherwise.

Robustness to out-of-distribution data is critical for building generalizable NLP systems since train
and test data often come from distinct user interactions or sources. In this project, we are provided
with three primary in-domain reading comprehension datasets (Natural Questions [3], NewsQA [4]
and SQuAD [5]) and three small out-of-domain reading comprehension datasets (RelationExtraction
[6], DuoRC [7], RACE [8]) for training a QA system which will be evaluated on test examples from
out-of-domain datasets.
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Given the variation of QA tasks required, we aim to build a multitask language learner for our project.
And the Mixture-Of-Experts (MoE) technique, which aims to divide a complex task into appropriate
subtasks, each of which can be solved by an expert network, seems to be an intuitive approach. Along
with the mixture weight for these expert models produced by a gating function, we can have a QA
model that can extrapolate better at each example at inference.

In this project, we explore two architectures on the DistilBERT backbone, MoE and Switch Trans-
former, and train the models on in-domain datasets and augmented out-of-domain datasets to improve
domain adaptive QA performances. We conduct and analyze extensive experiments to understand the
effectiveness of our methods and reach the best combination of our models and techniques through
our ablation study.

3 Related Work

While a single network may overfit to the superficial distribution in the in-domain training data, with
a meaningful number of expert sub-networks, a gating network that selects a sparse combination
of experts for each input example, and careful balance on the importance of expert sub-networks,
a Mixture-of-Experts (MoE) model [9] can train a robust learner that can be generalized to out-
of-domain datasets. However, the paper [9] does not touch on how well MoE applies to the QA
task.

Inspired by the success of large-scale Transformer [10], while seeking greater computational effi-
ciency, Switch Transformer [2] is proposed as a sparsely-activated expert model. It activates a subset
of the neural network weights for each incoming example. Switch Transformer simplifies the MoE
routing algorithm with reduced communication and computational costs.

In addition to novel architectures, data augmentation can also boost performance and robustness of
training. Easy data augmentation (EDA) techniques [11], including synonym replacement, random
deletion, random swap, and random insertion, have shown effectiveness on small datasets, despite
their simplicity. Back translation is another technique that has also been shown to improve reading
comprehension performance [12], thus gaining popularity.

4 Approach

As figure 1 shows, after the output layer of the DistilBERT [1], we adds n single fully-connected layer
in parallel as experts and another linear layer that serves as the gating function, before producing the
final output. Given a input x, the output y of the model is y =

∑n
i=1 G(x)iEi(x), where G(x)i is

output of the gating function and and E(x) is the output of ith expert network.

For the Switch Transformer, we bring the MoE layers up to the middle of the DistilBERT model [1]
and replace the dense feed forward network with a sparsely-activated switch FFN layers, as figure 2
shows. Through testings, we find that 8 switch FFN layers work the best. We choose 8 switch FFN
layers in the following experiments.

For EDA, after data augmentation of each context paragraph, we rematch the answers within the
augmented context. In order to reduce failure of rematch, we avoid operations on words within
contexts that also appear in the answers.

Similarly, for back translation, we only translate context before and after answers. We use Google
Translation API for its better speed and accuracy. We use Spanish, French, and German as intermediate
languages (Appendix A.1).

5 Experiments

5.1 Data

There are 6 datasets in total. Three in-domain datasets, SQuAD [5], NewsQA [4], and Natural
Questions [3], are primarily used to train a QA system; three out-of-domain datasets, DuoRC [7],
RACE [8], and RelationExtraction [6], are used for evaluation. During training, the model will see
50,000 training examples from each in-domain dataset and only 127 examples from each out-of-
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Figure 1: MoE architecture

Figure 2: Switch transformer architecture

domain datasets for fine-tuning. In the end, we will report performance on the test sets from three
out-of-domain datasets.

5.2 Evaluation method

For evaluation, we will report the performance on both Exact Match (EM) and F1 score, averaged
across the entire evaluation dataset.

• Exact Match: it is a binary measure whether the model prediction matches exactly with the
target answer.

• F1 score: it is calculated based on precision and recall by comparing the model prediction
with the target answer word-by-word.
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5.3 Experimental details

From our experiments, we find that all of our models will converge within 5 epochs. Therefore, we
train our models for 5 epochs, with a learning rate of 3e-5. We use a batch size of 16.

• For the Sparse-gated Mixture-of-Expert (MoE) model, we use hidden dimension of 3,072
and evaluated the number of experts in the range from 1 to 16.

• For the Switch Transformer, we explore the number of transformer layers in the range from
1 to 16.

We report the out-of-box performance of the baseline model that is trained only with the in-domain
dataset. For other experiments, we use a combination of the in-domain examples and the out-of-
domain ones for training.

The data augmentation is only applied to the out-of-domain training examples, given the dispropor-
tional dominance of the in-domain examples in the training set.

5.4 Results

We share a summary of our experiment results on different MoE model architecture and data
augmentation techniques in Table 1. First, with the baseline DistilBERT model, we improves the F1
by simply including the Out-of-Domain examples in the training set.

In the comparison between the MoE architecture, we find both Sparsely-gated MoE and the Switch
Transformer achieves better performance over the DistilBERT baseline. The Switch Transformer
pushes the performance by 3.222 to 52.052!

Table 1: An ablation study of model architectures and data augmentation. The performance reported
is the F1 achieved on the out-of-domain validation dataset. The column "Improvement" indicates the
improvement over baseline)

.

Treatment Experiment F1 Improvement

Baseline DistilBERT Baseline 48.83 -
DistilBERT +OOD 51.330 2.5

Explore MoE
Architecture

One Expert per Dataset 47.096 -1.734
Sparsely-gated MoE 51.901 3.071
Switch Transformer 52.052 3.222

Data Augmentation
(with Switch Transformer)

EDA 52.396 3.566
Back translation 52.905 4.075
EDA + back translation 53.477 4.647

Notably, as suggested from the project handout, we tried training a separate DistilBERT model for
each of the datasets, and a small MLP as the gating function. This approach fails in comparison
with the baseline model. To understand this, we looked into the performance of each of the separate
DistilBERT model. As shown in Table 2, all of the models trained on the single dataset significantly
overfit to the in-domain dataset and therefore underperform in the out-of-domain examples on the
validation set. The best out-of-domain F1 is only 43.469, from the model trained on NewsQA.
After combining three models as experts and fine-tuning the gating function with the out-of-domain
training examples, the new model gets a better F1 on the out-of-domain validation set, 47.096,
but still underperform the Baseline because none of the them perform well on the out-of-domain
examples. This is a mixture-of-"non-experts". In comparison, for both Sparsely-gated MoE and
Switch Transformers, both of them are exposed to all 6 different datasets at training, so the inside
experts are delegated to learn different underlying distributions among the dataset and the gating
function is trained to select the right experts for each input example. This "self-supervised" training
mechanism enables them to be generalized at diverse QA tasks, thus being more robust to domains
shift.

From the comparison of different MoE architecture, we find that the Switch Transformer gives the
best out-of-domain F1. Then, we evaluate the effectiveness of data augmentation techniques with
the Switch Transformers. We observe an improvement of 0.344 and 0.853 respectively with Easy
Data Augmentation (EDA) and back translation. When they are applied together with the Switch
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Table 2: The performance of the DistilBERT model trained separately on each of the in-domain
dataset, reported on both the in-domain and the out-of-domain validation sets.

Training Dataset In-domain F1 Out-of-Domain F1
NewsQA 55.66 43.469
SQuAD 54.046 42.126
Natural Questions 57.058 39.813

Transformer, we see an even higher F1 score of 53.477. This means different data augmentation
techniques can complement to each other. In future work, we recommend exploring other different
data augmentation techniques to see if the performance can be lifted to a higher level.

The combination of our best MoE architecture and data augmentation achieves a 53.477 F1 score in
the out-of-domain validation set, which is a 9.52% performance gain over the baseline. On the final
test set, we reported a higher 59.322 F1 and 41.995 EM. This effectively shows the robustness of our
QA system.

5.4.1 Quantitative Analysis on the Number of Experts

Here we are showing more detailed quantitative analysis around the expert numbers in different MoE
architectures.

First, we look into the simple Sparse-gated Mixture-of-Expert architecture. In Figure 5.4.1, we look
into the effect on performance by the number of experts in the network. Compared with the minimum
1 expert, the model achieves a better F1 with 2 experts and a better EM with 4 experts. This is a
good indication of adding extra experts help improves the robustness. However, the performance
begins degrading with more experts added to the model. We believe it is due to the fact that the
model establish over-reliance on the same few experts and the other experts only add noise instead of
valuable opinions for the outputs. In the beginning of training, a few lucky experts produce good
results, so they get more favored by the gating function and their parameteres are updated more often,
thus reinforcing this imbalance. A possible fix to this problem is to apply more constraint to balance
the importance and workloads among experts in the loss function, which we will dive deep in section
5.4.3.

Figure 3: The performance achieved at different number of experts in the Sparse-gated Mixture-of-
Expert model, evaluated in the out-of-domain F1 and EM metrics.

We also look into the effect of the expert numbers in the Switch Transformer, as shown in Figure 4.
In comparison, the Switch Transformer faces a similar issue that the additional experts over 4 don’t
contribute to the performance, but compared with the sparsely gated MoE, the Switch Transformer
is more robust to the addition of experts. In Switch Transformer [2], for each Switch layer, a new
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auxiliary loss is calculated to balance load and importance of experts. Based on our evaluation, it
seems the auxiliary loss in the Switch Transformer is effective at balancing among experts.

4

Figure 4: Performance of MoE vs Transformer, with different number of experts

5.4.2 Quantitative Analysis on Data Augmentation

In this section, we dive deep into the effectiveness of data augmentation in the baseline DistilBERT,
Sparsely-gated MoE, and the Switch Transformer respectively.

For Easy Data Augmentation (EDA), by default we generate 4 augmented context per input context.
sr is the percentage of random synonym replacement within a sentence using a synonym dictionary
WordNet, rs is the percentage of words randomly swapped positions within a sentence, ri is the
percentage of inserting a synonym of a random word in a random position within a sentence, and rd
is the percentage of words randomly deleted within a sentence.

First, we trained the DistilBERT model only on the out-of-domain examples, augmented with EDA,
back translation, and a combination of them. As shown in table 3, all of these data augmentation
brings meaningful addition of training dataset and improves the performance. The combination of
both data augmentation brings the most performance gain. This is a very positive signal that the
benefit of the data augmentation techniques can compliment to each other.

Table 3: Data Augmentation - DistilBERT trained on OOD data only

EDA Back translation F1 Improvement
None None 25.971 -
sr = 0.3 None 26.416 0.445
sr = rs = ri = rd = 0.1 None 28.445 2.474
None Spanish 30.17 4.199
None Spanish, French 29.741 3.77
None Spanish, French, German 29.231 3.26
sr = rs = ri = rd = 0.1 Spanish 30.638 4.667 (17.97%)

In the experiment with the Sparsely-gated MoE, we evaluated the effectiveness of EDA.

Table 4: Data Augmentation - EDA

Model #experts EDA F1 Improvement
MoE 1 sr = 0.3 52.599 1.387
MoE 2 sr = 0.3 51.617 0.101
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Finally, on the Switch Transformer, we apply the back-translation through Spanish and report the
performance in Table 5. For almost all the expert numbers, with only one exception, the back
translation improves the performance compare the counter-part without back translation. The biggest
gain is observed at the Switch Transformer with 16 experts, likely because that model has the largest
capacity among all. Based on these results, we add back-translation to our final model configuration.

Interestingly, on Distilbert (table 3), back translation with only Spanish worked better than with
multiple intermediate languages (Spanish+French, or Spanish+French+German). This is likely due
to over-fitting from multiple versions of back translated training data. However, in our final model
configuration Switch Transformer, using three intermediate languages (Spanish, French, German) led
to better performance than Spanish alone (table 1). This shows that a model with larger capacity can
benefit better from larger scale data augmentation.

Table 5: Data Augmentation - Back translation

Model #experts Back translation F1 Improvement
transformer layers = 8
Transformer 1 Spanish 52.599 0.547
Transformer 2 Spanish 51.617 0.226
Transformer 4 Spanish 51.719 -0.145
Transformer 8 Spanish 51.706 1.118
Transformer 10 Spanish 50.816 0.073
Transformer 12 Spanish 50.73 0.447
Transformer 16 Spanish 51.888 1.161

5.4.3 Quantitative Analysis on Switch Transformer’s Load Balancing Loss

Since in section 5.4.1 we suspect that imbalance of experts’ importance during training could be
a reason why models with 1 or 2 expert(s) perform the best, we decided to further investigate the
load balancing loss within the switch transformer, which is an auxiliary loss introduced to encourage
a balanced load across experts 2. For each Switch layer, given N experts indexed by i = 1 to N
and a batch B with T tokens, the load balancing loss is computed as the scaled dot-product between
vectors f and P :

lossload = αN ·
N∑
i=1

fi · Pi (1)

where fi is the fraction of tokens dispatched to expert i and Pi is the fraction of the router probability
allocated for expert i. The equation 1 encourages uniform routing of the batch of tokens across the N
experts. The hyperparameter α is a multiplicative coefficient for the auxiliary loss.

For the experiments above, we used the default α = 0.01. Now we want to see if performance of mod-
els with 4 and 16 experts improves with larger load balancing loss coefficient α ∈ {0.1, 0.05, 1, 2} .
Models are trained with data augmentation.

Table 6: Performance of transformer models (out-of-domain F1 evaluation scores), with different
load balancing loss coefficient

Load balancing loss coefficient α 0.05 0.1 1 2
Transformer 4 52.828 52.697 52.351 49.741
Transformer 16 50.441 50.909 51.033 51.325

If we do row-wise comparison, by increasing the coefficient α, we observe that the performance of
the model with 4 experts does not improve, but the model with 16 experts does. We believe that is
because with many experts, the model can spread out the load among different experts and leverage
multiple experts more easily.

However, the best performance in Table 6 is achieved with 4 experts and a smaller coefficient
α = 0.05. It is still smaller than the best performance in the Table 1, which is achieved with 1 expert.
The coefficient α provides a trade-off between ensuring load balance and the primary cross-entropy
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objective. It seems that this load balancing loss is effective at spreading the load among experts and
involve more experts into the task, but it does not improve on the final task. A better load balancing
techqiue would be needed for this robust QA task.

6 Analysis

We did qualitative evaluation by reviewing our model’s prediction to the out-of-domain examples and
compare them with the corresponding labeled answers. Overall, we find our system provide reliable
and reasonable answers to most of the context-questions pairs. It is especially good at answering
fact-based questions, as shown in the examples list below. For these questions, there is a single,
unique answer that can be found in the context paragraph. Our model is able to identify the answer
from the context, thus offers predictions that exactly matches with the expected answers.

• Which chromosone can you find Bcl-2?

– Prediction: kidney transplant
– Answer: kidney transplant

• What do new users of Facebook need to create an account?

– Prediction: email address
– Answer: email address

• What’s the location of the project?

– Prediction: Arizona desert
– Answer: Arizona desert

• What is the name of Boris Diaw’s team?

– Prediction: San Antonio Spurs
– Answer: San Antonio Spurs

• Where did Hasumi receive his MBA?

– Prediction: Harvard University
– Answer: Harvard University

There are also several examples that we found in which either multiple answers should be allowed,
but because only a single answer is provided in the label, our model is falsely penalized. For example,
for the first question below, we believe that the third stage and the withdrawal stage are equivalent,
based on the context, but because only "withdraw stage" is provided in the label, the prediction is
considered as 0 EM and 0.5 F1. Similarly, in the second example, both "gray haze" and "smog" are
the same thing, but the model prediction is considered as 0 EM and 0 F1. This is the limitation of our
evaluation dataset and metrics.

• In which stage will people feel most uncomfortable?

– Prediction: third stage
– Answer: withdrawal stage

• According to the news report, what does Beijing have in common with Los Angeles?

– Prediction: gray haze
– Answer: smog

We also find that our model is not good at summarizing a paragraph or answering complex questions
with multiple conditions. In the first example below, the question starts with "what do we know about
X" – this is about summarizing the takeaway from the context paragraph. Our model gives a half
sentence that is probably extending "California sea lions" and doesn’t make sense itself. Similarly,
the second question is about "what does A do to B", and our model’s prediction is very far from
the expected answer. This indicate that our model is not trained sufficiently to answer this type of
questions. We look through the in-domain training examples and find very few questions that look
like this. This explains why our model is bad at this type of questions. Another type of the question
that the model fails has multiple conditions, like the third example below. The question asks for the
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place where two conditions need to meet. Our model fails to provide the correct answer. This type of
the questions require reasoning based on a long paragraph. This is a difficult task and our model does
not learn well to answer this type of questions yet.

• What do we know about California sea lions?

– Prediction: are the fastest of all the
– Answer: Males are much larger than females

• What does Dong-Jin do to Ryu ?

– Prediction: ambushes and murders the organ dealers.
– Answer: set up an electric booby trap on his doorknob, which renders Ryu unconscious

• Where can you enjoy both convenient transport and beautiful beaches?

– Prediction: Thailand has a lot to offer, from the party-central Bangkok
– Answer: Melbourne, Australia

• What year did Santer-Poos Ministry II start?

– Prediction: 1989 and 13 July 1994
– Answer: 1989

• Why do Ryu and Dong Jin wait at each others’ residence ?

– Prediction: attempt to kill
– Answer: Ryu arrives at Dong-jin’s residence in an attempt to kill him

Lastly, we find the following example very interesting. The question contains an error: it should be
brother name instead of brothers name. Our model is likely confused about this error, so it returns
two similar names, Constantine II and Constantius II, where as the expected answer is "Constantius
II". It indicates that our model pays great attention to the words in the question and can be confused
if the question contains typo or grammar mistakes.

• What is Constans’s brothers name?

– Prediction: Constantine II and Constantius II
– Answer: Constantius II

7 Conclusion

To conclude, our combination of best MoE architecture and data augmentation achieves a 53.477
F1 score, which is a 9.52% performance gain. On the final test set, we reported a higher 59.506 F1
and 41.651 EM. We successfully demonstrate the effectiveness of Mixture-o-Expert architecture in a
Robust QA task. Based on the qualitatively analysis, we find our model is very reliable and accurate
at answering fact-based questions whose answers can be found from the context paragraph; it fails at
questions that require reasoning or summarizing the long paragraphs.

One limitation of our work is that we did not get the time to investigate the imbalance of experts’
importance in our models. Avenues for future work could include analysis of the acquired expertise of
each expert, further adjustment of loss functions in order to train experts better, and different routing
mechanisms of the gating function (for example, dataset classification could be a straightforward way
to direct input data to experts specialized on each dataset).
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A Appendix (optional)

A.1 Exploration of back translation

Using Google API, we realized that languages closer to English as intermediate languages lead to
more stability in translation.

For example, the string from training data "EETdE BTdB $28,530,608 EETdE BTdB Memphis
Grizzlies EETdE EETrE BTrB BTdB James Harden EETdE BTdB $28,299,399 EETdE BTdB
Houston Rockets EETdE EETrE BTrB BTdB DeMar DeRozan EETdE BTdB $27,739,975 EETdE
BTdB Toronto Raptors EETdE EETrE EETableE" failed to be translated through Chinese due to its
unconventional words that cannot be matched in Chinese.

When broken down to smaller phrases such as "EETdE BTdB $28,530,608 EETdE BTdB " it was
somehow able to be translated through Chinese.

The original string, however, could be translated through languages closer to English, such as Spanish
or French.
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