
QG Augmentation: Generating Novel
Question/Answer Pairs for Few-Shot Learning

Stanford CS224N Default Project (RobustQA)
Mentor: Kathy Yu. No external collaborators. Not sharing project.

Ben Alexander
Department of Computer Science

Stanford University
balex@stanford.edu

Gordon Downs
Department of Computer Science

Stanford University
gwdowns@stanford.edu

Abstract

In many real-world settings, only a small volume of data is available for training.
In such settings, data augmentation is a key method that improves task performance
by artificially increasing the amount of training data. Most data augmentation
techniques for Question Answering (QA) datasets focus on creating extra question-
answer pairs that are rephrased versions of existing pairs in the training dataset (e.g.,
through back-translation and synonym replacement). In this project, we explore
"QG Augmentation," a data augmentation technique that uses a question generation
(QG) pipeline to generate novel QA pairs from the training passages. We further
improve the basic technique by: 1. Creating a separate filtering module that discards
low-quality generated QA pairs, 2. Modifying our QG Augmentation pipeline
to better handle long context passages, and 3. Tuning two key hyperparameters
in the generation pipeline. We provide experiments and ablations to evaluate the
effectiveness of each approach. Our results show that QG Augmentation is effective
in improving model performance in the few-shot setting (+2.82 F1, +2.88 EM vs.
vanilla finetuning).

1 Introduction

This project focuses on the task of extractive question answering, which involves extracting the
correct answer from a context passage, given a question about that passage. Specifically, we focus on
the few-shot setting, where we only have a small number of examples to train on. In our case, we
have three extractive QA training datasets for finetuning, each with just 127 training samples.

These few-shot settings are quite challenging, because the the lack of training data becomes a major
bottleneck. Better model architectures and training strategies can help improve performance, but
only to an extent; even the best models will struggle when there is so little data. Therefore, data
augmentation can be an especially valuable tool in these few-shot settings, since it helps alleviate the
data scarcity problem by synthetically increasing the dataset size.

However, typical data augmentation techniques (such as backtranslation and synonym replacement)
usually perform small, local perturbations of existing QA pairs. Synonym replacement involves
swapping a random subset of words in the text with their synonyms, and backtranslation involves
translating the text to another language and then back to English. These types of methods produce
augmentations that are essentially rephrased versions of the original text. These traditional augmen-
tation methods are still very valuable for improving model performance and robustness, but they
typically do not add much truly "new" information to the training set.

In contrast, our strategy, which we call "QG Augmentation" or "QGA," involves automatically
extracting novel QA pairs from the training passages, many of which are quite distinct from those in
the original dataset. Some examples are shown in Table 1 below.
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Context passage: ConAgra Foods, Inc. is an American packaged
foods company headquartered in Omaha, Nebraska.

Question Answer
Original What city is ConAgra Foods located in? Omaha
Synonym replacement What town is ConAgra Foods based in? Omaha
Backtranslation In which city is ConAgra Foods located? Omaha
QG Augmentation What kind of foods does the company sell? packaged
QG Augmentation Conagra foods is based in which us state? Nebraska
QG Augmentation What is the name of the packaged foods company? ConAgra Foods

Table 1: Examples of traditional augmentations vs. QGA. The traditional augmentations produce
slight perturbations of the original, whereas QG Augmentation produces diverse and novel QA pairs.

We implement QG Augmentation using part of the question generation pipeline from the “Probably
Asked Questions” (PAQ) project from Facebook AI Research [1]. We borrow two models from the
PAQ project to construct our QG augmentation pipeline: 1. An answer extractor, and 2. A question
generator. The PAQ project also includes a third model that they use to filter out low-quality generated
questions, but it is not applicable to our use case.

The main contributions of this paper are as follows:

1. We introduce the basic QG Augmentation approach, which involves generating novel QA
pairs from the training passages.

2. We implement our own filtering module to filter out low-quality QA pairs generated by the
QG Augmentation pipeline.

3. We modify the QG Augmentation pipeline to better handle long context passages.
4. We tune two key hyperparameters in the generation pipeline (chunk size, and the number of

QA pairs to generate per sentence) and provide ablations.

2 Related Work

In addition to PAQ, the idea of using models to generate novel training data has been explored before.
For example, [1], [2], and [3] study this problem for the purposes of data augmentation. [4] uses this
method to improve information retrieval systems. [5] and [6] study question generation as its own
task. [7] uses question generation to improve real-time question answering. [8] uses synthetic data
generation specifically to make QA models more robust to human adversaries. We did not find much
prior work about this type of augmentation specifically applied to the few-shot setting, so we hope
that our results will contribute to the literature.

3 Approach

3.1 Extractive QA model

For the actual extractive QA model itself, we use DistilBERT [9] with a question answering head.
This is a copy of DistilBERT with linear layers added on top, which output the span start and span
end logits. We use the DistilBertForQuestionAnswering implementation from HuggingFace [10].

3.2 Traditional augmentation methods

In addition to QGA, we also implement two "traditional" data augmentation methods, just to serve as
a comparison to QGA.

First, we perform backtranslation on the provided questions, which involves translating the question
to French and then back to English. We use the MarianMT model from HuggingFace to perform
backtranslation [11].

Second, we perform synonym replacement on the provided questions using the Easy Data Augmenta-
tion [12] tool, replacing 10% of words in the text with their synonyms. Note that for simplicity, we
only perform synonym replacement on the question, not the context.
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3.3 QG Augmentation

QGA is the main component of our project. Here we provide more details about the QGA pipeline.

3.3.1 QGA: Basic pipeline

Our core QG Augmentation pipeline consists of two models borrowed from the PAQ project:

1. An answer extraction model pa(a|c). This is a BERT-based model that has been trained to
predict a probability pa(a|c) for each candidate answer span a, which helps us identify the
spans that are most likely to be answers in the given context c.

– For example, given the passage, "Christopher Manning is a professor of computer
science at Stanford University. He received his PhD from Stanford in 1994." It would
likely identify spans such as "Christopher Manning," "Stanford University," and "1994"
as some of the highest-probability answer spans.

2. A question generator pq(q|a, c) that generates a question q, given context passage c and
answer a in that passage. This model is a copy of BART-base [13] fine-tuned for text
generation.

– For example, given the above passage and the answer "1994," it would ideally produce
a question such as, "When did Christopher Manning receive his PhD?"

We use the pre-trained versions of these models from PAQ, which were trained on Natural Questions
[14].

3.3.2 QGA: Filtering module

Of course, the basic QGA pipeline will not produce 100% high-quality QA pairs; some will be poorly
written and/or completely wrong. Therefore, we implement a filtering module that identifies and
discards lower-quality QA pairs.

To do so, we begin with a vanilla fine-tuned extractive QA model, which has been fine-tuned only
on the original data from RACE, DuoRC, and RelationExtraction (i.e., without any QGA data). We
use this model as our filter. First, we take each question generated by QGA, and use the vanilla
fine-tuned model to predict its answer. Then, we calculate the F1 score between this predicted answer
and the answer from QGA. If this F1 score exceeds a certain threshold, we consider that this is a
"high-quality" question, and keep it; otherwise, we discard it.

The line between "high-quality" vs. "low-quality" QA pairs can be controlled by setting the F1
threshold at which we filter. A low F1 threshold (close to 0) will keep more of the generated QA
pairs; a high F1 threshold (close to 1) is more strict and will keep fewer generated QA pairs. We
experiment with different F1 thresholds and provide ablations in the Experiments section.

Figure 1: QGA pipeline with filtering module.

3.3.3 QGA: Improving performance on long contexts with sentence chunking

We noticed that our models struggle with long context passages in two different ways.

1. On the QGA side, from our manual inspection, the model appears to generate noticeably
lower-quality QA pairs when run on long context passages (i.e., longer than just a few
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sentences). In the Analysis section, we will see a case where the model starts hallucinating
and asks questions about Harry Potter, even though the passage is completely unrelated.

2. On the extractive QA side, even before introducing any QGA data, we notice that the
vanilla fine-tuned QA model performs worse on long context passages than on short context
passages (see plot (b) in Figure 2). This is especialy problematic for DuoRC and RACE,
which have longer passage lengths than RelationExtraction (see plot (a) in Figure 2).

(a) (b)

Figure 2: (a) Distribution of context passage lengths across datasets. RelationExtraction has the
shortest contexts, while the other two datasets can have significantly longer contexts. (b) Performance
of the vanilla fine-tuned model (i.e., not trained on any QGA data) vs. the length of the context
passage. Clearly, the model performs better on short contexts than on long contexts.

The second problem is out of scope for this project; extractive QA is simply more difficult on longer
contexts. However, we would like to address the first issue, so that we do not further exacerbate the
poor performance on long contexts by generating low-quality questions for the RACE and DuoRC
datasets.

Therefore, we add an additional modification to our QGA pipeline. Instead of running the QGA
generation models on the entire passage, we use the spaCy Sentencizer tool [15] to break the passage
into chunks of n sentences before passing them through QGA. Since QGA generates higher-quality
QA pairs on shorter passages, sentence chunking yields better results.

4 Experiments/Results

4.1 Data

For the RobustQA Track of the default project, we have two main sets of extractive QA datasets. The
"in-domain" datasets are SQuAD [16], NewsQA [17], and Natural Questions [14]. We have 50,000
training samples from each of these. The "out-of-domain" datasets are DuoRC [18], RACE [19], and
RelationExtraction [20]. We have just 127 samples from each of these. Our validation and test sets
consist only of questions from the out-of-domain datasets.

Of course, we also augment these out-of-domain training datasets with our QGA approach. We do not
use QGA on the in-domain datasets, since they already contain a lot of data and we are not directly
evaluating on them, but theoretically that is also possible.

4.2 Evaluation metrics

We compare the predicted vs. ground truth answers using the Exact Match (EM) and F1 scores. EM
is a harsh metric for whether the prediction is an exact match with the ground-truth. F1 score is the
harmonic mean between precision and recall, and is more forgiving than EM; it produces a score
between 0 and 1 depending on the degree of overlap between the predicted and ground-truth answers.
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4.3 Experiments

For all training runs, we hold the training hyperparameters constant: we train for 3 epochs with a
learning rate of 3e-5, using a random seed of 42. This applies to both the baseline pre-training step,
as well as the additional finetuning step (so a fine-tuned model will have been trained for a total of 6
epochs: 3 long epochs for the baseline and 3 shorter epochs for finetuning).

4.3.1 Baseline, vanilla finetuning, and traditional augmentations

To obtain our baseline model, we train the DistilBERT model on the 150,000 samples from the
in-domain datasets (SQuAD, NewsQA, and Natural Questions).

For our "vanilla fine-tuned model," we start with the baseline model from above, and fine-tune it on
the 381 samples from the out-of-domain datasets (DuoRC, RACE, and RelationExtraction). We refer
to this as "vanilla" finetuning because it does not include any augmented data.

For traditional data augmentation (backtranslation and synonym replacement), we train on both the
381 original out-of-domain samples, as well as their augmented versions.

Performance of these models is shown in Table 3 in section 4.4 below.

4.3.2 QGA: Basic version

Next, we finetune a model using the data generated from basic QGA. Here, "basic" refers to the
fact that we just run the full training passages through the original QGA pipeline, without any
modifications (e.g., sentence chunking or the filtering module). Performance of this model is shown
in Table 3 in section 4.4 below.

4.3.3 QGA: Filtering module

Next, we perform experiments with the filtering module. We take one of our generated QGA datasets
(chunk size = 3, number of QA pairs generated per sentence = 3) and pass all of the generated QA
pairs through the filtering module to get our reduced dataset.

As mentioned earlier, we can choose the threshold between high- vs. low-quality questions, which
controls the tradeoff between generating less (but higher-quality) vs. more (but lower-quality) data.

In Table 2, "% kept" indicates the percent of generated QA pairs that make it past the filtering step.
We try a range of different filtering thresholds, from F1 = 0.0 (no filtering) up to 1.0 (exact match).

All Validation RACE RE DuoRC
Filter threshold % kept F1 EM F1 EM F1 EM F1 EM
F1 = 0.0 (no filtering) 100 51.81 34.82 38.87 19.53 74.14 55.47 42.27 29.37
F1 = 0.2 66.2 52.52 35.86 39.18 21.88 75.48 55.47 42.75 30.16
F1 = 0.4 61.7 52.76 36.39 37.77 21.88 75.22 53.91 45.19 33.33
F1 = 0.6 52.6 51.62 35.34 31.14 16.41 77.16 56.25 46.47 33.33
F1 = 0.8 41.0 52.55 36.91 36.30 20.31 76.99 58.59 44.24 31.75
F1 = 1.0 (exact match) 35.7 52.98 37.17 35.96 19.53 77.19 57.81 45.66 34.13

Table 2: Performance of QGA models with varying filtering module thresholds.

We find that the most stringent filtering (F1 = 1.0, which keeps only the highest-quality QA pairs)
performs the best overall. This is an interesting result, because it suggests that it is better to generate
higher-quality data, even if that means we generate less of it.

4.3.4 QGA: Improving performance on long contexts with sentence chunking

As we mentioned earlier, QGA can struggle with long context passages, so we use sentence chunking
to mitigate this issue. Here we evaluate chunk sizes from 1-10 sentences to see if we can find any
trends. In Figure 3, we break down the results by dataset.
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Figure 3: Performance after training on data generated via QGA with different chunk sizes.

The trends are not incredibly dramatic, but we can make some interesting observations.

For RelationExtraction, there is a slight downward trend as chunk size increases. RelationExtraction
contains mostly short (1-sentence) contexts, so it makes sense that it would perform best when the
generated questions are also generated on relatively small chunk sizes. For DuoRC, it is hard to
identify much of a trend. For RACE, which has longer context passages than RelationExtraction,
we can see a slight upward trend as chunk sizes increases. This makes sense as well; since RACE
passages are longer, some of the questions require synthesizing knowledge across multiple sentences,
so generating questions on longer chunks could be beneficial.

4.3.5 QGA: Tuning generation hyperparameters

Next, we perform a grid search over two key QGA hyperparameters. The first is chunk size, which is
the same one we examined in the previous section. The second is the number of QA pairs to generate
per sentence. If we generate more QA pairs per sentence, we will have more data; however, it may be
lower-quality and/or more repetitive. Results are shown in the heatmap in Figure 4 below.

Figure 4: QGA hyperparameter search: validation dataset F1 scores, across various chunk sizes and
numbers of QA pairs generated per sentence.

The results are quite informative. Clearly, generating fewer QA pairs per sentence is better, since the
left side of the plot has noticeably better results than the right side. This suggests we should generate
fewer but higher-quality sentences–which, interestingly, also matches the conclusion we reached in
our filtering module experiments.
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For the chunk size, it seems that using a moderate value (2-4 sentences) is best, since there is a dark
green horizontal stripe in that part of the heatmap. This also makes some intuitive sense; by using
moderate chunk sizes, we might get more complex questions than if we only used single-sentence
chunks, but we also don’t increase the chunk size so much that the QGA models output nonsense.

4.4 Summary of main results

In Table 3 below, we summarize the main results from all of our experiments. For the QGA
experiments above (i.e., the filtering module and the hyperparameter grid), we list only the best model
from that experiment.

All Validation RACE RelationExtraction DuoRC
Model F1 EM F1 EM F1 EM F1 EM
Baseline 50.06 34.03 37.51 22.66 69.67 46.88 42.89 32.54
Vanilla finetuning 50.16 34.29 36.98 21.88 70.49 48.44 42.89 32.54
Synonym replacement 50.15 34.03 36.88 21.09 70.95 49.22 42.50 31.75
Back-translation 50.04 34.29 36.63 21.88 70.88 49.22 42.51 31.75
QGA (basic) 50.45 35.60 36.57 20.31 74.41 54.69 40.22 31.75
QGA: best from hyper-
parameter grid

52.38 36.13 35.27 19.53 76.39 55.47 45.37 33.33

QGA: best filtering
module (F1 = 1.0)

52.98 37.17 35.96 19.53 77.19 57.81 45.66 34.13

Table 3: Summary of main results.

In general, all of our QGA approaches outperform the baseline models. Overall, the best model is the
QGA model with our filtering module (at F1 threshold = 1.0).

QGA improves performance on RelationExtraction most dramatically (+6.70 F1 over vanilla finetun-
ing). It also improves performance on DuoRC noticeably (+2.77 F1). It doesn’t seem to help on RACE
(-1.02 F1). RelationExtraction performance may improve so dramatically because the QGA models
are better at generating questions for short contexts, which caters more towards RelationExtraction
than towards the other two datasets (although we still get a sizable boost on DuoRC).

On the RobustQA hidden test set, we evaluate our two best models (the bottom two rows of the table).
Our best QGA hyperparameter grid model achieves 60.37 F1 and 43.03 EM, and our best filtering
module model achieves 60.52 F1 and 42.82 EM. Overall, we are pleased with our results, since QGA
improved our results almost across the board.

5 Analysis

5.1 Manual analysis of generated QA pairs

Some example QA pairs generated by the PAQ pipeline are found in the table below.

Context: Ray Eberle died of a heart attack in Douglasville, Georgia on August 25, 1979, aged 60.

Question Answer
Original Why did Ray Eberle die? heart attack
Generated #1 Where did ray eberle die of a heart attack? Douglasville, Georgia
Generated #2 How old was ray eberle when he died? 60
Generated #3 Who died of a heart attack in georgia? Ray Eberle

The generated questions are very high-quality. All three generated QA pairs are correct and grammat-
ically sound, and they are also diverse in that they ask about different parts of the sentence.

However, as we’ve discussed, QGA can struggle with long context passages. Here is an example that
we generate on a much longer context.
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Context: [long passage about The Sword in the Stone (36 sentences)]

Question Answer
Generated #1 What is the name of the owl in harry potter? Archimedes
Generated #2 What is the name of arthur’s brother in harry potter? Sir Kaye

In this case, the question generation model gets confused and asks about Harry Potter, which is
completely unrelated to the original passage. The model seems to recognize that the passage is about
England and is from the fantasy genre, and wrongly assumes that it is from Harry Potter. This is why
we use sentence chunking, since it allows the model to focus more closely on a limited number of
sentences without having to fully internalize the entire passage.

5.2 Filtering module

We saw above that, empirically, our filtering module achieves strong results. However, we want to
point out one important aspect of the filtering procedure: it is somewhat self-reinforcing, since with a
high F1 threshold, it only keeps QA pairs that the vanilla finetuned model already performs well on.
So, we likely discard many difficult examples that the model would actually benefit from training
on. However, risking discarding good QA pairs is somewhat necessary; to perfectly filter the low-
vs. high-quality questions automatically, we would need to have already solved the extractive QA
task. So, even though we may be throwing out some good, difficult examples, our results suggest that
filtering is beneficial because we are also throwing out most of the worst QA pairs. And of course, by
tuning the F1 threshold, we can control this tradeoff between keeping more difficult examples (at the
expense of also keeping more low-quality examples) vs. keeping more high-quality examples (at the
expense of discarding more difficult examples).

5.3 Other comments

When examining our training data, we noticed that in terms of total sentences in the original context
passages, RACE is by far the largest (almost 80% of total sentences). Therefore, RACE has a
disproportionately large representation in the data generated by QGA with our sentence-chunking
pipeline. For this project, we wanted to maximize the amount of data we could augment from, so we
left it as is, but moving forward it would be interesting to examine whether this balance affects the
final results.

6 Conclusion

In this paper, we explore QG Augmentation, a synthetic data augmentation technique that generates
novel QA pairs from training passages. We find that QGA significantly improves performance in the
few-shot setting (+2.82 F1, +2.88 EM over the vanilla fine-tuned model). We additionally introduce
a filtering module to filter out low-quality generated questions, which proves to be effective and
produces our most accurate model overall. We also show that sentence chunking can help improve
QGA performance on long context passages, and we tune two key hyperparameters in the generation
pipeline.

One limitation of QGA is that, while it dramatically improves performance on short-context datasets
like RelationExtraction (+6.70 F1), it improves performance less, or even worsens performance, on
long-context datasets like DuoRC (+2.77 F1) and RACE (-1.02 F1). We think that this discrepancy
in performance across datasets stems from our generated QA pairs being worse for longer contexts;
even with sentence chunking, we likely cause the QA pairs to be more local/less complex. In the
future, we would like to improve the question generation model’s ability to process long contexts so
that we can generate higher-quality QA pairs on them, potentially even without sentence chunking.
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