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Abstract

Question-answering (QA) systems aim to understand a natural language passage
and answer questions about the passage. In this project, we build a QA system
for the Stanford Question Answering (SQuAD) 2.0 dataset. Our goal is to hand-
implement and tune deep learning language models to achieve strong performance
on this task. Our primary contribution is our exploration of various modifications
to the QANet architecture. Most notably, we show that the coattention mechanism
can not be a substitute for the context-query layer. Using our implementation of
QANet, we obtained a performance of F1/EM of 69.104/65.754 for the dev set and
F1/EM of 65.992/62.637 on the test set.

1 Introduction

The QA task is a natural language processing problem where the system aims to generate an in-
passage answer to a question about a given document or passage. Specifically, it outputs a span of text
from the passage that answers the question or outputs no answer if the answer is not in the passage.
QA systems allow us to retrieve information efficiently and are used in applications such as virtual
assistants and medical information retrieval systems.

There are many challenges in creating a high performing QA system. For instance, it includes the
same problems as the reading comprehension task. It requires reasoning over long spans of text since
information from throughout the passage (both local and far away) may be used. The model also
needs to be able to encapsulate different word meanings based on the context. Additionally, question
answering needs to learn question structures and understand the passage-question relationship for
questions that do not use the same vocabulary as the passage.

Performance on SQuAD is commonly used to measure effectiveness of QA systems. This dataset
contains passages with questions and correct answers. SQuAD 2.0 introduces unanswerable questions
so the model has to also learn if the question is answerable from the passage.

Figure 1: Example of a SQuAD <Question, Context, Answer> Triple
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In this work, we explore the performance of two deep learning model architectures that performed
well on SQuAD 1.1: Bidirectional Attention Flow (BiDAF) and QANet. BiDAF uses recurrent neural
networks (RNNs) and introduces the idea of bidirectional attention while QANet uses convolutional
neural networks (CNNs) and self-attention. [1, 2] Our contributions are:

1. We reimplement the QANet architecture from scratch.
2. We explore modifications to BiDAF and QANet.
3. We evaluate both of these system’s performances on SQuAD 2.0 and analyze their limita-

tions.

We improved the BiDAF architecture by exploring different character embeddings. Interestingly, we
found that 1D CNNs create better embeddings than 2D CNNs. We also experimented on QANet’s
original architecture, replacing the context-query attention with coattention. [3] Even though
coattention does capture context-to-query attention and query-to-context attention, we found that it
does not work well with the QANet architecture.

2 Related Work

Attention-based techniques aim to ascribe meaning to words based on their context. In addition to
better comprehension of the passage itself, QA systems use attention in order for the question to learn
the context of the passage and vice versa. BiDAF introduced the idea of bidirectional attention where
the attention flows from the question to the context and from the context to the question. [1] This
allows QA models to represent the passage knowing what the question will be.

However, RNN-based models, such as BiDAF, are slow during training due to the recurrent layers
present in these models. QANet is a transformer-based model that aims to address this limitation
by using CNNs, capturing context using self-attention and positional embeddings instead. [2]
With recurrent layers forcing the output to be computed sequentially, forward computations can be
parallelized and training speed can increase by 3 to 13 times faster in training than other state of the
art models without sacrificing much accuracy. Its fast training speed allowed it to be trained on larger
models and more data to further increase performance. The paper uses the context-query bidirectional
attention in the BiDAF paper to capture contextual information between the passage and the question.

There are recent context-query attention models as proposed in the Dynamic Coattention Network
paper. [3] Coattention fuses codependent representations of the question and the passage in order to
only focus on the relevant parts of both. We will incorporate this coattention model into the QANet
architecture. Since the original QANet and Dynamic Coattention Network papers do not include
implementations by the authors, we believe that our replication will be a useful resource for further
work and modifications on the QANet architecture.

3 Approach

3.1 BiDAF

We use the BiDAF model prodvided by the CS224N staff as the baseline for our project. This model
uses a hidden size of 100 and consists of 5 layers as described in the BiDAF paper: embedding layer,
encoder layer, attention layer, modeling layer, and output layer. [1] Our baseline model is trained
using only word embeddings.

3.1.1 Character Embedding

We improve on the baseline model by incorporating a learnable 200D character-level embedding
to the embedding layer to improve morphology and for the model to better learn words not in the
vocabulary. The initial character embedding is padded or truncated to a length of 16 characters per
word and resize each embedding to the hidden size by passing through a convolution filter. It is
then max-pooled to give a fixed size embedding. The character embedding is concatenated with a
pretrained 300D GloVE word embedding. [4] The character embedding layer has a dropout of 0.2
while the word embedding layer has a dropout of 0.1. The concatenated embedding is passed through
a projection layer and a highway network. [5] This is done for both the context and the question.
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Figure 2: BiDAF Model Architecture

For the convolution filter, we experimented with both 1 dimensional and 2 dimensional convolutions.
The input is given as (batch size, embed size, sequence length, max word length) which requires
a 2D convolution. However, the 2D convolution will convolve around each sentence whereas 1D
convolutions will convolve over each word, which might allow the model to learn more from the
structure of the input. [6] We collapse the last batch size and sequence length dimensions but reshape
the input in such a way that sequence length is recoverable for the 1D convolutions.

3.2 QANet

We implement QANet from scratch (aside from positional encodings and bidirectional flow attention).
The QANet model has 5 layers and uses a hidden size of 128. [2] Outside of the model architecture,
we employ a learning rate warm-up period to slowly increase our learning rate from 0 to 0.001 in the
first 1000 steps. We used the Adam optimizer with β = (0.8, 0.999), weight decay = 3e-7, and eps =
1e-7. The layers are implemented as follows:

Figure 3: (a) The QANet Architecture

Figure 2: (b) QANet Encoder Block

Input Embedding Layer This layer consists of word-level and character-level embeddings. We used
our implementation from the BiDAF model with 1D convolutions.

Embedding Encoder Layer The main component of QANet is the encoder block. It consists
of a sinusoidal positional input encoding, convolutional layers, a self-attention layer, and a feed-
forward layer. Each layer’s output is normalized before going into the next layer to stabilize the
hidden state dynamics and reduce training time. [7]. We also used a residual connection to allow
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for better gradient flow through the network. Positional encoding are used in lieu of recurrence
to inject information about the relative position of the tokens in the sequence. [8]. We refered
to (https://github.com/hackiey/QAnet-pytorch/) to implement positional encodings. Depth-wise
separable convolutions are used for the convolution layers to increase training speed. This layer
consists of a depthwise convolution followed by a pointwise convolution which reduces the number
of parameters in a convolution. However, our network was large enough so it increased efficiency
without significantly reducing accuracy. [9] Self-attention was necessary to attend every word in the
sequence to every other word without the use of RNNs.

The embedding encoder layer uses one encoder block to process the embeddings. The block contains
8 multi-headed attention heads and 4 convolutions with a kernel size of 7.

Context-Query Attention Layer QANet uses the same context-query attention mechanism as BiDAF.
[1] From the encoded query and context, we create a similarity matrix to obtain the attentions and
attended vectors from the context to the query and the query to the context. The only difference in
implementation is that in QANet, the output of this layer is resized through a 1D convolution with
kernel size 1.

Model Encoder Layer The model encoder layer is the core of the model and uses the encoder blocks
described in the Embedding Encoder Layer section. We used 3 stacks of 7 encoder blocks. They had
2 convolutions per block and a kernel size of 5. Weights are shared between the between each block
stack.

Output Layer The output layer predicts the probability of the start and end of the answer span and
are modeled as:

pstart = softmax(W1[M0;M1])

pend = softmax(W2[M0;M2])

where W0 and W1 are learnable parameters.

3.2.1 Modifications

After implementing the QANet architecture, we explored different model variations.

Number of Model Encoder Blocks After our initial runs, we wanted to explore the effect of changing
the number of encoder blocks in the model encoder layer on runtime and accuracy. To do this, we
changed the number of blocks and the batch size to fit more training examples per step. We tested
this with 5 encoding blocks and 10 encoding blocks. Ultimately, we stuck to a set batch size because
of hardware limitations.

Coattention Instead of using bidirectional attention in the context-query attention layer, we explore
using coattention which attends to the query and context simulatenously. [3] From the context
embedding D and the non-linear projection of the query embedding Q = tanh(W (Q)Q′ + b(Q)),
we calculate an affinity matrix:

L = DTQ

The query-to-context attention is calculated:

AQ = softmax(L)

CQ = DAQ

The context-to-query attention is likewise calculated. Then, we can compute the summaries of the
previous attention contexts in light of each word. These two steps can be done in parallel to get a
co-dependent representation of the question and document:

AD = softmax(LT )

CD = [Q;CQ]AD

Then, we use a bidirectional LSTM to fuse temporal information to the coattention:

ut = Bi− LSTM(ut−1, ut+1, [dt; c
D
t ])

U = [u1, ..., um]

We substitute this coattention mechanism directly with the bidirectional flow attention.
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4 Experiments

4.1 Data

We used the SQuAD 2.0 dataset for training and testing our model. The SQuAD 2.0 dataset contains
100,000 questions about sections of Wikipedia articles and an additional 50,000 unanswerable
questions designed to appear similarly to answerable ones. [10]

4.2 Evaluation method

We evaluated our models using both an exact match (EM) and F1 score of the predicted answer
compared to the true answer. The exact match requires a complete match between the predicted
and labeled answer, so even if the prediction is functionally correct, such as by answering "Chicago,
Illinois" compared to a label of "Chicago," the answer would be counted as wrong. The F1 score is
the harmonic mean of the precision and the recall of the provided answers, which makes results more
forgiving as it doesn’t require complete equivalence.

4.3 Experimental details

Table 1: Max Dev EM and F1 Score by Model Type

MODEL LEARNING RATE BATCH SIZE TRAINING TIME

BASELINE 0.5 64 3H 14M
BIDAF WITH 1D CHARACTER EMBEDDING 0.5 64 3H 49M
BIDAF WITH 2D CHARACTER EMBEDDING 0.5 64 3H 55M
QANET 5 LAYERS 0.001 16 8H 45M
QANET 7 LAYERS 0.001 16 11H 42M
QANET 10 LAYERS 0.001 16 12H 32M
QANET COATTENTION 0.25 16 2H 59M

For the QANet models with 7 and 10 layers, we ran into issues with the memory limits on Azure.
This resulted in the training runs failing partway through, and thus we had to retrain those models
several times before they worked. The memory issues were also why we had to go down to a 16
batch size for all QANet models compared to the 64 batch size described in the original paper and
which we used for the BiDAF models.

All QANet models took significantly longer than BiDAF models to train. This makes sense as the
model architecture is significantly more complicated. Additionally, the larger the number of encoding
block layers in a QANet model, the longer it took to train.

The learning rate for every model besides the QANet with coattention was just picked to be the
same as what was described in their respective implementation papers. For the QANet model using
coattention, we tried using lower learning rates, but anything below 0.2 wouldn’t really train; the
graph was essentially stagnant. As such, we increased the learning rate until we got a meaningful
result. However, the coattention version still significantly underperformed the other QANet models,
and so we cut its training time short to save Azure credits, explaining the extremely short training
time in the table.

4.4 Results

On the IID SQuAD test leaderboard, we were able to achieve an F1 score of 65.922 and an EM score
of 62.637, which at the time of writing has us in 23rd place. From our readings of QANet’s successful
results in previous question answering challenges, we were not surprised by how well it performed.

When we were implementing the character embeddings, we tried both 1D and 2D convolutional
character embeddings. The original paper described the embedding using a 1D convolution, but we
thought there was a possibility that a 2D convolution could encapture more information and thus
perform better. We were incorrect in our thought, and the 2D convolution performed worse than the
1D did, so we went with the 1D from then on.
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Table 2: Max Dev EM and F1 Score by Model Type

MODEL EM F1

BASELINE 57.42 60.82
BIDAF WITH 1D CHARACTER EMBEDDING 62.34 65.82
QANET 5 LAYERS 63.84 67.34
QANet 7 Layers 65.64 68.89
QANET 10 LAYERS 63.65 66.83
QANET COATTENTION 51.10 53.22

Figure 4: BiDAF (w/ Character Embedding) vs QANet Performance
(bottom = baseline BiDAF, middle = character embedding BiDAF, top =
QANet)

Figure 5: 1D vs 2D Convolutional Character Embedding vs Baseline
(bottom = baseline, middle = 2D Convolution, top = 1D Convolution

However, what did surprise us was that when we tested QANet with different numbers of encoding
block layers, the results went down for both an increase and a decrease in the number of layers. We
first tried training with 5 layers and saw an increase when we went to 7, the number of encoding
block layers in the original architecture, but were confused when it went back down again after we
moved up to 10. This means that the increase in testing time as described in the previous section
makes increasing the layers beyond 7 not worth it at all because it both takes longer to train and gives
worse results. In hindsight, however, we realized that the original paper’s model was tested with
different numbers of layers and was already chosen to be optimal, so our results matching theirs help
confirm that our implementation was correct.

We also tried replacing the the self-attention in the encoding block of QANet with coattention. This
performed significantly worse than even the baseline implementation. As such, we cut it’s training
early to save compute time.
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Figure 6: QANet with 5 vs 7 vs 10 Encoding Blocks vs Baseline
(orange = baseline, blue = 5 layers, green = 10 layers, gray = 7 layers)

Figure 7: Coattention QANet vs Baseline
(red = Co-Attention QANet, orange = baseline BiDAF)

5 Analysis

Aside from just looking at the F1 and EM scores, we also looked into how the model was actually
answering the questions themselves. From qualitative inspection, the 7-Layer QANet performs
especially well when the answer is N/A. This is not terribly surprising though because it is the most
common result and, due to the relative frequency of unanswerable questions, the model is pretty
incentivized to be more cautious on when it thinks it should give an answer. When it does answer
however, it will also frequently give more verbose answers than the labels do, such as “$4.093 million
available for disbursement” instead of just “$4.093 million”. This is very much expected because
we selected for the model with the highest F1 to do well on the leaderboard, and the F1 calculation
places a larger importance on including the right answer over giving a concise result.

Figure 8: Context, Question, Answer, and Prediction for 7-Layer QANet
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6 Conclusion

Overall, we learned a lot about QANet, how to design model architecture, and how to effectively
interpret and implement model descriptions in scientific papers. We are able to successfully implement
and create modifications for the QANet architecture. In doing so, we were able to achieve an increase
in F1 and EM each by over 8 points compared to the baseline and placed us in 23rd on the leaderboard.
We tried to implement many different changes to the QANet architecture, but none of which were
more successful than our implementation of QANet as described in the original paper. Additionally,
we were primarily limited on time, Azure credits, and memory. We could only train so many QANet
modifications because QANet trains extremely slowly, using up our Azure credits and taking a full
day to see results. Additionally, we had to do some runs multiple times and lower the batch size
because we would run into a memory issue on Azure partway through. For future work, we would
like to try testing parameterized positional encodings, letting the model learn the encoding parameters
instead of requiring sinusoidal positional encodings. We hoped this would allow for a more flexible
architecture, but did not have the time nor credits to test it.
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