
R-Net and Friends
Stanford CS224N Default Project

Amrita Palaparthi
Department of Computer Science

Stanford University
amritapv@stanford.edu

Ani Vegesana
Department of Computer Science

Stanford University
avegesan@stanford.edu

Megan Worrel
Department of Computer Science

Stanford University
mworrel@stanford.edu

Abstract

In our work, we examine how character-level embeddings, additional input features,
and a modified attention mechanism, coupled with hyperparameter tuning, can
enhance performance on the task of Question Answering. We perform these exper-
iments on the SQuAD 2.0 dataset, building off of a baseline model of Bidirectional
Attention Flow with two new input features from DrQA [1] and attention mecha-
nisms described in R-Net[2]. Our findings indicate that our model boosts perfor-
mance above the baseline, more effectively handling out-of-vocabulary words. Our
highest-performing single model achieved scores of F1 = 65.68 and EM = 62.48
on the SQuAD 2.0 dev set, and our best ensemble model reached dev set scores
of (F1 = 68.32,EM = 65.74) and scores of (F1 = 65.67,EM = 63.13) on
the SQuAD 2.0 test set.

1 Key Information
• Mentor: Allan Zhou (ayz@stanford.edu)
• External Collaborators (if you have any): N/A
• Sharing project: N/A

2 Introduction

Reading Comprehension, a type of Question Answering (QA), is the task of locating the answer to a
question in a context passage where both the question and context passage are presented as blocks of
text and the answer is a phrase contained in the question verbatim. Models solving this task are used
in web search engines to synthesize answers to user provided questions from crawlable web pages. It
is also critical to determining how well models can understand and draw information from a piece
of text. This is a difficult problem because the answer to a question is not always phrased exactly
as it appears in the passage text or could be absent from the context entirely. Current methods for
solving the QA task on the SQuAD dataset, such as BiDAF, DrQA, and R-Net, perform well with
EM scores of 73.3, 70.0, and 76.7 and F1 scores of 81.1, 79.0, 83.7 and [3, 1, 2]. However, these
three models have not been tested on the harder SQuAD 2.0, which includes unanswerable questions,
by the original authors. This leaves room to adapt these models to increase speed and performance on
SQuAD 2.0. These models also have disparate architectural components which have not previously
been combined in a single model.

In our paper, we create a new hybrid architecture that starts with a BiDAF model, adds the exact
match (EM) and aligned question embedding (AQE) features from DrQA, and adds the gated and

Stanford CS224N Natural Language Processing with Deep Learning

self-attention components of R-Net. We then perform an ablation study on our hybrid architecture
and analyze how important each component is to the model. Finally, we use the "most confident
model decides" strategy to ensemble different hybrid models to achieve better performance than
any individual model could on its own. Our method resulted in EM=63.128 and F1=65.674 on the
SQuAD 2.0 test dataset.

We were able to verify the result in the BiDAF paper that the addition of character embedding
improves the performance of the model still holds on the SQuAD 2.0 dataset. We were also able to
verify that EM doesn’t yield additional meaningful information to the model if AQE features are
present as well, paralleling DrQA. Unfortunately, we were unable to reproduce R-Net’s SQuAD 1.1
results on the SQuAD 2.0 dataset, only reaching F1=61.75 and EM=64.36 without BiDAF attention
features, but we were able to demonstrate R-Net’s result that the self-attention block is able to improve
the performance of the model in situations where context information that substantiates the answer is
relatively far away from the answer.

3 Related Work

3.1 DrQA

Chen et al.’s DrQA model introduces the use of additional input features to boost performance on
open-domain question answering. Rather than solely using word-level and character-level embeddings
for both context and question inputs, DrQA leverage three types of additional features as part of their
context encoding process: Exact Match, Aligned Question Embedding, and Token Features.

Described in detail in 4.2, Exact Match and Aligned Question Embedding (AQE) aim to improve
performance by providing a measure of similarity between words in the question and context. These
features serve similar roles; while Exact Match notes the presence of a single word in both the context
and the question, AQE serves as a softer, more flexible indicator between similar question and context
words. Token features, on the other hand, were manually selected and reflected characteristics of
words such as part of speech and term frequency. In our approach, we choose to implement only
Exact Match and AQE features, as Chen et al. found through ablation analysis that they contributed
more to the F1 results achieved by DrQA. Since the removal of token features did not substantially
decrease F1 score in the presence of Exact Match and AQE, we postulate that the latter two features
would be more meaningful to include in our paragraph encoding method.

3.2 R-Net

Beyond feature engineering, we augment our baseline model to include two additional forms of atten-
tion: gated attention and self-matching attention (self attention). Gated attention functions similarly
to our BiDAF baseline’s context-to-question attention mechanism, generating a representation of
a context paragraph that is aware of relevant matching information in the question. We also add
R-Net’s self attention mechanism to our implementation. This component of the model, which has no
analogue in BiDAF, bolsters performance by generating a refined, self-aligned representation of the
context paragraph. We included this attention (described further in 4.3) in our approach since the
results of R-Net indicate that it enabled the model to perform more effectively on questions where a
large amount of passage context is required to determine the correct answer.

4 Approach

4.1 Character-Level Embeddings

Our first modification to the BiDAF baseline model was the addition of character-level embeddings
to supplement lookup-based word embeddings. We experimented with passing our character-level
embeddings through a 1D convolution – as is done in the original BiDAF implementation – and
through a bidirectional RNN encoder. Character-level embeddings utilize the morphology of words
and enable better generalization to words not contained in the provided vocabulary.

2

4.2 Feature Engineering

After successfully implementing character-level embeddings, we then computed the exact match
fexact_match and aligned question embedding falign features from DrQA. We chose to implement all
three exact match features from the DrQA model: exact match, lowercase form, and lemmatized form.
For exact match, we return a binary value indicating whether each context word is found directly in
the question. For lowercase and lemmatized form, we convert all words in the context and question to
lowercase and corresponding lemma respectively before performing the same check as exact match.
These input features can be summarized by fexact_match(ci) = I(ci ∈ q) for each context word ci
and question q.

Next, we computed falign for each context word. The aligned question embedding feature plays
a complementary role to fexact_match in model performance. falign is an attention mechanism
between context and question embeddings, providing a soft alignment between context and question
words. As in the DrQA model, we compute aligned question embeddings according to falign(pi) =∑

j ai,jE(qj) where

ai,j =
exp(α(E(ci)) · α(E(qj)))∑
j′ exp(α(E(ci)) · α(E(qj′)))

= softmax:,j
[
α(E(c))α(E(q))⊤

]
for a dense layer with ReLU nonlinearity α. All additional features were appended to our context
embeddings.

Figure 1: Embedding layer with feature engineering and separate Highway Networks

As seen in Figure 1, the final context embeddings were of the form E(ci)) =
[word embedding, character-level embeddings, EM, AQE] and the final question embeddings were
of the form E(qi)) = [word embedding, character-level embeddings]. In the embedding layer, the
baseline model passes context and question embeddings through both a shared projection and a High-
way Network. After appending our additional features, we modified the baseline embedding layer to
pass context and question embeddings through separate projections with identical construction. For
the Highway Network, we chose to run two experiments – applying a shared and separate Highway
Networks to the context and question embeddings respectively. The separate Highway Networks
were also constructed identically.

4.3 R-Net and Extensions

After performing feature engineering, we began implementing the R-Net gated and self attention to
replace and complement BiDAF attention, described in detail in [3].

First, we substituted the BiDAF attention layer in the baseline model with the sequential computation
of R-Net gated and self attention. Our initial implementation followed the R-Net specifications
exactly. Gated attention is a soft alignment between context representations {uC

t }m1 and question
representations {uQ

t }m1 resulting in {vCt }m1 , paralleling context-to-question attention from the BiDAF
model. Define additive attention as follows:

stj(x
t
j) = vT tanh(xt

j)

ati(x
t
j) =

exp(sti(x
t
j))∑m

j=1 exp(s
t
j(x

t
j))

ℓt(x
t
j) =

m∑
i=1

ati(x
t
j)u

Q
i

3

Using the definition for additive attention, the equation for gated attention is dt = ℓt(W
Q
u uQ

j +

WC
u uC

j +WC
v vCt−1) where vCt is the RNN output at each time step

vCt = RNN(vCt−1, [u
C
t ; dt]

∗)

An additional gate is applied to [uC
t ; dt] to compute the RNN input [uC

t ; dt]
∗. This gate is computed

on the context representation uC
t and context-question attention dt. It is defined

gt = sigmoid(Wg[u
C
t ; dt])

[uC
t , dt]∗ = gt ⊙ [uC

t ; dt]

gt is used to capture the idea that select context words are more relevant to answering the question
than other context words. The gate effectively directs the RNN to focus on those relevant context
words.

The attention output dt and LSTM output vCt are computed through mutual recursion. Our im-
plementation for gated attention required explicitly providing the hidden state at each step of the
LSTM, requiring manual iteration, and ultimately causing long training times. For more efficient
training, we then implemented a non-recursive version of R-Net’s gated attention, computing the
attention in its entirety before passing the result into the LSTM. Thus, our stj was now defined
dt = ℓt(W

Q
u uQ

j +WC
u uC

j) with the rest of the gated attention computation remaining the same. This
approach leveraged faster matrix multiplication and gpu processing, achieving much faster training
times.

The second component of R-Net’s attention, and the most significant contribution of the model, is self
attention – a soft alignment from question-aware context representation vCt back to itself. Although
theoretically the LSTM should be able to build up a hidden representation of the entire context, due
to the small finite length of the hidden state vector, the LSTM is prone to catastrophic forgetting of
far away contextual information [4]. While gated attention makes the context representation question-
aware, the self attention mechanism makes the context representation more robust to catastrophic
forgetting. Self attention hC

t is computed similarly to gated attention vCt where self attention is
defined

hC
t = BiRNN(hC

t−1, [v
C
t ; dt]

∗)

with dt = ℓt(W
C
v vCj +WC′

v vCt) and [vCt ; dt]
∗ computed with an identical gate as in gated attention.

Input to the BiDAF modeling layer is thus of the form gi = [vCi ;h
C
i] ∈ R4H for each context location

i ∈ {1, ..., N} where H is the hidden size from the embedding layer projection.

Hoping to better understand the comparative strengths of BiDAF and R-Net, our next substitution
was to remove the modeling and output layers from the baseline model and use the R-Net output
layer instead. The R-Net output layer is computed as an unidirectional RNN with attention (similar
to gated attention) where the timestep is not the word position, but is instead just two timesteps (start
and end token indices of the answer) and the input to the attention is the output of self-attention,
identical to [2]. This produces two predicted log-probabilities, corresponding to the start and end
indices of the answer.

Finally, we decided to experiment with a parallel model architecture, computing both BiDAF and
R-Net attention in parallel and concatenating the results for input into the BiDAF modeling and
output layers in order to create a more expressive model architecture that can represent models of
both families.

Shown in Figure 2, embeddings are fed directly into the computation for BiDAF attention and R-Net
gated and self attention.

Further, since R-Net gated and self attention are no longer computed sequentially, we modified
the mechanism for computing self attention to be computed directly on the context representations
{uC

t }m1 (seen in Figure 2). stj in self attention is now defined

stj = vT tanh(WC
v uC

j +WC′

v uC
t)

with the rest of the self attention computation remaining the same. Input to the BiDAF modeling
layer is thus of the form gi = [ci; ai; ci ◦ ai; ci ◦ bi; v

C
i ;h

C
i] ∈ R12H for each context location

i ∈ {1, ..., N}.

4

Figure 2: "Parallel" model architecture

5 Experiments

5.1 Data

Our model used GLoVe 300-dimensional word embeddings of 2.2M words and 64-dimension
character embeddings for 1373 characters (a combination of Latin letters with and without diacritics,
numerical digits, punctuation, and characters used in the native names of foreign places or people)
pretrained on the 840B token Common Crawl dataset as well as the EM and AQE features from Chen
et al.’s DrQA. We used the Spacy small English pipeline to lemmatize words in the EM calculation.

The model takes in dictionary IDs for each word and character (corresponding to the ID of the words
and characters in the dictionary used to train GLoVe) in the context and passage texts and the EM and
AQE features as input. At each word position in the passage, the model output a logit, a predicted log
confidence (i.e. probability), for the answer starting at that position as well as a logit for it ending at
that position. The model was trained on the SQuAD 2.0 dataset which has 100,000 answerable and
50,000 unanswerable questions. Finding the highest valued start and end logit for any given model is
equivalent to finding the predicted start and end token indices for the answer. If the model predicts
that there is no answer to the question, it will return logits such that both the start and stop indices are
0. The answer is the substring of passage text between the start and end indices following the Python
convention (the substring is inclusive of the start token, but exclusive of the end token). The logits
are used directly in ensembling where we always defer to the model with the highest ending logit on
any given question.

5.2 Evaluation method

We use the two official metrics used by the SQuAD dataset: EM (exact match) and F1. EM is
the fraction of the predicted answers in which the start and stop indices match the ground truth
answer exactly (including the case where there is no answer.) This a harsher metric than F1, which is
based on the number of overlapping word locations (not unique words) in the predicted and correct
substring and doesn’t give a zero score for partially correct answers. The F1 score for a single answer
is the harmonic mean of the precision, the fraction of ground truth word locations that are in the
predicted answer, and the recall, the fraction of predicted word locations that are in the ground truth
answer. The F1 score for a model is the mean over the entire dataset of the F1 scores of the model’s
predictions.

5.3 Experimental details

Prior to hyperparameter tuning, all experiments were run with a learning rate of 1, hidden size of
100, batch size of 64, and dropout probability of 0.1, as used in the BiDAF baseline. Batch size was
reduced to 16 when training R-net models in order to adhere to memory constraints.

We built upon our model incrementally, choosing configurations of each component that yielded the
best performance. For instance, after implementing character-level embeddings, all subsequent exper-

5

Model F1 EM AvNA

Baseline 60.65 57.37 67.82
+ Character-Level Embeddings 63.76 60.14 70.29

+ EM 64.34 60.85 71.40
+ AQE 64.52 61.35 72.76
+ EM & AQE (shared highway) 65.04 61.75 72.68
+ EM & AQE (separate highways) 65.16 61.00 71.92

Mutually Recursive R-Net Attn + R-Net Output 64.36 61.75 70.63
Non-Recursive R-Net Attn + R-Net Output 61.61 51.18 70.36
Non-Recursive R-Net Attn + BiDAF Modeling/Output 62.32 58.86 69.03
Non-Recursive R-Net Gated Attn + BiDaf Modeling/Output 63.68 59.90 71.09
R-Net Self Attn + BiDaf Attn/Modeling/Output (⋆) 63.35 60.94 71.33
Parallel Attn + BiDaf Attn/Modeling/Output (†) 65.02 61.20 71.22

⋆; LR Decay (factor = 0.5, patience = 2) + Dropout = 0.30 65.68 62.48 72.69
†; LR Decay (factor = 0.5, patience = 2) 65.30 61.93 71.95

9 Model Ensemble 68.32 65.74 74.32
12 Model Ensemble 68.08 65.47 74.11

Table 1: Performance measured by the F1 and EM scores on the dev set. The AvNA column is the
fraction of questions for which the model responded "No answer" when the . The parameters that we
chose for evaluation for each model were the ones with the highest F1 score on the dev set.

iments were run with character-level embeddings included. After implementing feature engineering,
we chose to use both input features and separate highways for following experiments.

We noticed a substantial increasing in training time after implementing the recursive R-net gated and
self attention layers. The resulting model took 15.38 hours to train for 1 million steps, dwarfing the
corresponding 0.8 hours for our BiDAF-based models. To improve training efficiency, we shifted
to a non-recursive implementation and additionally utilized GRU rather than LSTM for the RNN
components of our model, reducing training time to 1.1 hours.

5.4 Results

Table 1 displays our experiment results on the development set of the SQUAD 2.0 dataset. The
addition of character-level embeddings improved F1 score by about 3 points. This was the greatest
improvement in F1 score of all changes made to the baseline. Improvement was expected as the
learned character-level embeddings allow the model to learn subwords and out-of-vocabulary words
and even perform better on infrequently seen vocabulary words. There was a negligible change in
scores when the character embedding 1D convolution was replaced with a bidirectional RNN (A).

The addition of EM features increased F1 by about 0.6, while AQE features increased F1 by about
0.8. We were expecting similar increases in F1 score from each feature individually as EM and
AQE compute similar metrics of similarity between context and question words. We also see that
implementing both features together leads to a further increase in F1 by about 0.5. This is consistent
with the DrQA observation that the two features serve "similar but complementary role[s]."

As shown in Figure A, the additional input features gave the model a boost early on, but leveled out
to match the performance of the model without feature engineering as training progressed. Intuitively,
the additional input features enabled the model to paraphrase context and drew attention to potentially
relevant context words; however, this benefit waned with further training of the original model.
Overall, this indicates that additional input features convey information that can be beneficial to speed
up training and boost model accuracy slightly, but can likely also be learned by a sophisticated model
on its own with enough training.

None of our R-Net experiments were able to surpass BiDAF performance in terms of F1 score
prior to hyperparameter tuning. This was a surprising result as R-Net reported higher F1 scores on
the SQUAD 1.0 development and test sets than the origial BiDAF model. A possible explanation
for this is that R-Net uses a variation of additive attention which is less expressive than the BiDAF

6

multiplicative attention. Additionally, this could simply be due to a lack of appropriate hyperparameter
selection, as implementing learning rate decay on the R-net parallel implementation eventually
boosted performance to beyond the F1 score achieved by BiDAF with feature engineering alone. In
addition, the mutually recursive R-Net implementation performed about three F1 points better than
the non-recursive version. This was expected because the mutually recursive implementation allows
the RNN and attention mechanism in gated attention to learn simultaneously, passing information
to each other at each time step. If we had the resources to train all our R-Net experiments with the
recursive implementation, we are confident that the R-Net results would have exceeded the BiDAF
results by a greater amount.

5.4.1 Hyperparameter Tuning

After creating our parallel model architecture using the hyperparameters used by BiDaF, we ran
more experiments with tweaked hyperparameters to attempt to improve performance. We lacked
the resources and time to run a thorough random or grid search on the hyperparameters, but we ran
the eight configurations in Table A. Based on that small set of experiments, we know that a larger
hidden size improves model performance and a different initial learning rate and changing the dropout
parameter only make relatively minor improvements within about one F1 point. Learning rate decay
yields substantial improvements, but did not provide a uniform boost in F1 score across all models.
This means that the correct scheduling hyperparameters are highly dependent on the architecture. In
experiments, we used a learning rate that multiplies the current learning rate by a factor every time
that the model’s F1 score has not improved for n evaluation steps, where n is called the patience.
Further fine-tuning of the LR scheduler and dropout are needed to reach optimal performance of the
architecture.

5.4.2 Ensembling

As mentioned in section 5.1, the ensembling method chooses the model with the highest ending logit.
Due to time constraints, we ensembled models from all twelve experiments that performed better
than our character level embeddings model in our final evaluation as opposed to retraining our best
model from scratch. By doing this, however, we still hoped and observed that slight differences in
model architectures would gave better collective understanding and still improve performance above
any single model. We also noticed that our simple ensembling produces poorer results that what we
would expect if it has too many models because it suffers from maximization bias, i.e. models that
produce confidently incorrect answers easily skew (bias) the answer of the whole ensemble due to
the maximum used in computation [5], suggesting that there is room for improvement. Ultimately,
we chose to evaluate our model on the complete ensemble instead of a subset of the highest scoring 9
because it was unclear whether choosing a subset of the models would lead to overfitting. Our final
12 model ensemble scored (F1 = 65.67,EM = 63.13) on the SQuAD 2.0 test set, scoring 17th
on the non-PCE leaderboard without use of transformers.

6 Analysis

Out-of-Vocabulary Words
Question: Who designed the garden for the University Library?

Context: Another important library – the University Library, founded in 1816, is home to over two million items. The building was designed by

architects Marek Budzyński and Zbigniew Badowski and opened on 15 December 1999. It is surrounded by green. The University Library

garden, designed by Irena Bajerska, was opened on 12 June 2002. It is one of the largest and most beautiful roof gardens in Europe with an area

of more than 10,000 m2 (107,639.10 sq ft), and plants covering 5,111 m2 (55,014.35 sq ft). As the university garden it is open to the public

every day.

Answer: Irena Bajerska

Prediction (baseline): Marek Budzyński and Zbigniew Badowski

Prediction (char embeddings): Irena Bajerska

The above question requires understanding of out-of-vocabulary words to answer correctly. The
context contains multiple proper nouns, in addition to specific numbers, that were not encountered
during training. With just the addition of character embeddings, which give knowledge at a deeper
level of granularity, the new model is able to predict the right answer when the baseline was not.
Long-range Dependencies

7

Question: Disruptions in sleep can lead to increase in what chronic conditions?

Context: When suffering from sleep deprivation, active immunizations may have a diminished effect and may result in lower antibody

production, and a lower immune response, than would be noted in a well-rested individual. Additionally, proteins such as NFIL3, which have

been shown to be closely intertwined with both T-cell differentiation and our circadian rhythms, can be affected through the disturbance of

natural light and dark cycles through instances of sleep deprivation, shift work, etc. As a result, these disruptions can lead to an increase in

chronic conditions such as heart disease, chronic pain, and asthma.

Answer: heart disease, chronic pain, and asthma

Prediction (gated): heart disease

Prediction (self-attention): heart disease, chronic pain, and asthma

In this question, the sentence containing the answer includes only the word "disruptions," while
the question itself refers to sleep disruptions. In order to infer that these disruptions refer to sleep,
knowledge of the previous sentence referring to "sleep deprivations" is required. The R-Net model
including self attention is able to capture this long-range dependency by placing emphasis on the
entirety of the text. However, the R-Net model that solely uses gated attention without self attention
lacks this capability and therefore only predicts "heart disease" rather than all affected conditions.

Question Word what which who where why when how whose other

Prevalence 3651 218 630 256 87 439 555 28 87

BiDAF

TNR 0.7691 0.7273 0.8192 0.8191 0.7250 0.8291 0.8111 0.8571 0.7742
FPR 0.2309 0.2727 0.1808 0.1809 0.2750 0.1709 0.1889 0.1429 0.2258

TPR 0.6784 0.8000 0.6797 0.6914 0.7234 0.7438 0.6361 0.6429 0.5714
FNR 0.3216 0.2000 0.3203 0.3086 0.2766 0.2562 0.3639 0.3571 0.4286

R-Net

TNR 0.7076 0.6667 0.7341 0.7652 0.6471 0.8034 0.7266 0.8125 0.6316
FPR 0.2924 0.3333 0.2659 0.2348 0.3529 0.1966 0.2734 0.1875 0.3684

TPR 0.6966 0.7869 0.6856 0.7234 0.7500 0.7701 0.6354 0.6667 0.5102
FNR 0.3034 0.2131 0.3144 0.2766 0.2500 0.2299 0.3646 0.3333 0.4898

Table 2: True and False Positive and Negative Rates of BiDAF and RNet Prediction of Answer vs No
Answer Depending on the Question Type
In an effort to understand why the R-Net model performed worse than the BiDAF model before
hyperparameter tuning, we looked at each model’s true negative rate TNR, false positive rate FPR,
etc. when predicting if each question type was answerable. Shown in Figure 2, R-Net had a worse
TNR (higher FPR) across the unanswerable questions for all nine question types, indicating that
R-Net consistently incorrectly predicted answers for unanswerable questions. This indicates that
the sophisticated, self-attending R-Net model may be learning nonexistent patterns. Further, R-Net
appears to have performed especially poorly on "how" and "why" questions which likely require
more advanced comprehension than the "when" questions on which its performance was stronger.

7 Conclusion

Implementing R-Net attention mechanisms in conjunction with DrQA’s additional input features
results in a substantial increase in performance over our baseline model on Question Answering for
SQuAD 2.0. Each of the four main components of our approach - DrQA additional input features,
R-Net attention mechanisms, hyperparameter tuning, and ensembling - built upon one another to
provide an incremental increase in F1 score, which, through our work, we were able to quantify. We
noticed that numbers are not in our vocabulary, so creating an "is numeric" binary input feature might
help boost performance. Given enough compute resources, we would have trained recursive R-Net
with each of the combinations in Table 1 to get a fairer estimate of performance. We would also run
R-Net without the DrQA input features to better segregate the improvements made by each. Future
work would also implement a bias aware sampling technique [6] or clustering [5] to choose the most
likely answer less naively to avoid maximization error in ensembling. Finally, in future work we
would have done a random search to tune the hyperparameters. We didn’t have the resources or time
to run enough experiments where we would be likely to get close to the best hyperparameters of our
model, so we just selected several hand-fabricated settings, leading to suboptimal performance.

8

References
[1] Jason Wetson Antoine Bordes Danqi Chen, Adam Fisch. Reading wikipedia to answer open-

domain questions. In Association for Computational Linguistics (ACL), 2017.

[2] Microsoft Research Asia Natural Language Computing Group. R-net: Machine reading com-
prehension with self-matching networks. In Association for Computational Linguistics (ACL),
2017.

[3] Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional
attention flow for machine comprehension. In 5th International Conference on Learning Rep-
resentations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net, 2017.

[4] Gaurav Arora, Afshin Rahimi, and Timothy Baldwin. Does an LSTM forget more than a CNN?
an empirical study of catastrophic forgetting in NLP. In Proceedings of the The 17th Annual
Workshop of the Australasian Language Technology Association, pages 77–86, Sydney, Australia,
4–6 December 2019. Australasian Language Technology Association.

[5] Charu C. Aggarwal and Saket Sathe. Theoretical foundations and algorithms for outlier ensembles.
SIGKDD Explor. Newsl., 17(1):24–47, sep 2015.

[6] Fábris Kossoski and Mario Barbatti. Nuclear ensemble approach with importance sampling.
Journal of Chemical Theory and Computation, 14(6):3173–3183, 2018. PMID: 29694040.

A Appendix

Figure A.1: Feature engineering ablation for BiDAF

9

Model F1 EM AvNA

Baseline 60.65 57.37 67.82
+ Character-Level Embeddings 63.76 60.14 70.29
+ RNN Character-Level Embeddings 62.52 59.00 70.34

+ EM 64.34 60.85 71.40
+ AQE 64.52 61.35 72.76
+ EM & AQE (shared highway) 65.04 61.75 72.68
+ EM & AQE (separate highways) 65.16 61.00 71.92

Mutually Recursive R-Net Attn + R-Net Output 64.36 61.75 70.63
Non-Recursive R-Net Attn + R-Net Output 61.61 51.18 70.36
Non-Recursive R-Net Attn + BiDAF Modeling/Output 62.32 58.86 69.03
Non-Recursive R-Net Gated Attn + BiDaf Modeling/Output 63.68 59.90 71.09
R-Net Self Attn + BiDaf Attn/Modeling/Output (⋆) 63.35 60.94 71.33
Parallel Attn + BiDaf Attn/Modeling/Output (†) 65.02 61.20 71.22

⋆; LR = 1.0 + Hidden Size = 75 (R-Net recommendation) 58.82 55.49 67.06
⋆; LR = 1.0 + Hidden Size = 100 63.19 60.73 70.63
⋆; LR = 0.5 + Hidden Size = 75 59.54 56.44 67.10
⋆; LR = 0.5 + Hidden Size = 100 (default) 63.35 60.94 71.33

⋆; LR Decay (factor = 0.1, patience = 10) 65.02 62.10 72.25
⋆; LR Decay (factor = 0.5, patience = 2) [Default Dropout of 0.2] 65.39 62.34 72.31
⋆; LR Decay (factor = 0.5, patience = 2) + Dropout = 0.30 65.68 62.48 72.69
⋆; LR Decay (factor = 0.5, patience = 2) + Dropout = 0.52 64.06 61.00 70.81
†; LR Decay (factor = 0.5, patience = 2) 65.30 61.93 71.95

2 Model Ensemble 65.98 63.10 72.32
5 Model Ensemble 67.60 64.42 73.82
8 Model Ensemble 68.22 65.54 74.31
9 Model Ensemble 68.32 65.74 74.32
10 Model Ensemble 68.30 65.70 74.24
11 Model Ensemble 68.21 65.52 74.16
12 Model Ensemble 68.08 65.47 74.11

Table A.1: More complete version of Table 1

10

	Key Information
	Introduction
	Related Work
	DrQA
	R-Net

	Approach
	Character-Level Embeddings
	Feature Engineering
	R-Net and Extensions

	Experiments
	Data
	Evaluation method
	Experimental details
	Results
	Hyperparameter Tuning
	Ensembling

	Analysis
	Conclusion
	Appendix

