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Abstract

In this paper we build two models for the question-answering task on SQuAD
2.0 dataset: BiDAF (Bi-Directional Attention Flow) network and QANet. Based
on vanilla BiDAF baseline model we first adopt coattention mechanism from
Dynamic Coattention Network into BiDAF. Secondly we re-implement QANet.
These two models get 61.855/62.309 EM and 65.309/65.595 F1 on development
set respectively. Fusing Performer technique into QANet is also explored. Finally,
we use a voting scheme ensemble model to achieve F1 = 68.35 on dev set and F1
= 65.69 on test set1.
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• Mentor: Yian Zhang
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2 Introduction

The task of question answering (QA) is to correctly answer a question to a paragraph given as context.
The task is so crucial in natural language process that it attracts the interests of both research work
and real-life applications. It’s an interesting research topic since it’s a good measurement of how well
an end-to-end system can “understand" a given paragraph. From a practical perspective, a machine
learning system than can understand questions from human can serve information need much broader
than simple keyword searching, as we can see in Figure 1.

Figure 1: Google has implemented a pretty good online QA system.

There was a lack of datasets both of large scale and high quality for models to train on [1], restricting
the application of deep learning models in this field. Recently a number of datasets have been

1Our implementation can be found at https://github.com/zhuofanx/cs224nproj
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developed to solve this problem. One example is SQuAD [2], which contains paragraphs from
Wikipedia and questions crowdsourced by Amazon Mechanical Turk. SQuAD2.0, the latest version
of SQuAD, contains about 150k questions in total, and roughly half of them do not have an answer
given the context, while the other half answerable questions are guaranteed to have a span of text
in the given paragraphs as their answers. We will use this dataset to measure the performances of
models developed in our wok.

With the development of datasets, more deep learning methods have shown their potentials in this
task. Specifically, the attention mechanism brings significant performance improvement. Successful
models include BiDAF [3], Dynamic Coattention Network [4], QANet [5], and Performer [6]. In this
work, we will explore an ensemble model which brings together the key ideas from these three papers.
Namely, we will use a simple version of BiDAF as our baseline model, and borrow the Coattention
idea from DCN to modify the architecture and achieve a better performance. We also re-implement
the QANet from scratch and perform some minor hyperparameter searching. Both the Coattention
Layer and QANet model bring an approximately 10% improvement to the F1 score from around 58
to around 65. To expedite the QANet without losing much performance, we also replace the attention
layer of QANet by adopting the FAVOR idea from Performer. Finally, we use a straightforward
ensemble model (a voting scheme) to achieve F1 scores of 68.35 on dev set and 65.69 on test set.

3 Related Work

Prior to 2016, the attention mechanisms applied to end-to-end machine comprehension and question
answering models usually involve a fixed-size vector on the summarization of a small context
paragraph with a uni-directional attention. In 2017, Seo et al. [3] introduced the Bi-Directional
Attention Flow (BiDAF) network, which uses bi-directional attention flow mechanism (i.e., query-to-
context and context-to-query attention) to obtain a query-aware context representation that allows
the unfixed attended vectors computed at every time step flowing into subsequent layers while each
attention is computed independently based on the query and the context paragraph only at the current
time step. This mechanism reduces the information by making the attention layer not to summarize
the context to be a fixed-size vector, at the same time, the memory-less attention computed at each
time step helps to enforce the attention layer focusing on the bidirectional interaction of context and
query at the current time step and not attending to some false information at the previous time steps.
Earlier in the same year, Xiong et al. [4] suggests the Dynamic Coattention Network (DCN) which
consists of a coattentive encoder that also utilizes a bi-directioanl attention to capture the interactions
between the query and the context, as well as a dynamic pointing decoder that iteratively predicts the
start and end points of the answer span, which helps the model to recover from the initial incorrect
answer spans.

In 2018, Yu et al.[5] takes advantage of the newly-introduced self-attention by Vaswani et al. [7]
and proposes a new Q&A architecture, QANet, which eschews the previous recurrent networks
and exclusively uses convolution for the local structures of the texts and self-attention for global
interactions between each pair of words, while still preserving the query-aware context representation
(i.e., context query attention) from BiDAF. The model outperforms the existed models on the SQuAD
1.0 dataset and also boosts the speed on training and evaluation in comparison to BiDAF. However,
self-attention requires quadratic cost O(T 2) on each pair of the words where T represents the
sequence length, there are different techniques such as low-rank matrix representation for key K
and value V by projection (Linformer) [8], local-sensitive hashing and reversible residual layers
(Reformer) [9], sparse attention mechanism by combining of different types of attentions (BigBird)
[10], etc. In 2020, Choromanski et al. [6] provides a practical but accurate approximation of regular
full-rank self-attention matrix in linear time without relying on any priors such as sparsity by using
a novel Fast Attention Via positive Orthogonal Random features approach (FAVOR+). One can
incorporate the linear-cost (or subquadratic-cost) self-attention approaches with QANet to further
enhance the speed.

4 Approach

In this section we detail the models we implement to solve the question answering task. Our ensemble
method has two components: an improved BiDAF model with Dynamic Coattention Layer and a
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QANet model expedited by an idea adopted from Performer to approximate the quadratic attention
computation in linear time.

4.1 Baseline Model

We use a vanilla BiDAF model as our baseline. In general, a BiDAF has an Embedding Layer, an
RNN Encoder Layer, a bidirectional Attention Layer, another Encoder Layer, and a final Output
Layer. Note that unlike the model specified in the paper, we do not include a character embedding
layer, which will be described in the next section.

4.2 Character Level Embedding

Character embedding layer is used for both models (BiDAF and QANet) we implement. It is
responsible for mapping each word to a 200-dimensional space to explore the internal word structure
(morphology) and handle out-of-vocabulary words.

We implement character-level embedding of each word using Convolutional Neural Networks (CNN).
The original randomly initialized character embedding is passed through a 2D CNN with kernel
size k = (1, 3) which outputs a vector xc ∈ R200. It’s then concatenated with the pretrained word
embedding and passed through a high way network to generate the final embedding vector.

4.3 Dynamic Coattention

In this section we discuss the Coattention Layer [4], which serves as a substitution to the original
Attention Layer in our baseline model. This idea may bring improvement since it provides a
more complicated attention mechanism, i.e., it also attends over representations that are attentions
themselves.

Let c1, c2, . . . , cN ∈ RH denote the context hidden states, and q1, q2, . . . , qM ∈ RH denote the
question hidden states. Here we adopt the idea proposed by Merity et al. [11] to also append sentinel
vectors c∅ and q∅ to context and question states respectively, which allows us to attend to none
of the hidden states. Note that we now have N + 1 context hidden states and M + 1 question
hidden states. We denote the hidden state matrix D = [c1 c2 . . . cN c∅] ∈ RH×(N+1) and
Q = [q1 q2 . . . qM q∅] ∈ RH×(M+1).

To allow for variation between question encoding space and document encoding space, we first apply
a non-linear projection layer to question encoding

Q′ = tanh (WQ+ b)

where W ∈ RH×H and b ∈ RH . Then we use the usual inner-product attention to compute the
similarity matrix L = D⊤Q. As in BiDAF, we normalize over L row-wise to produce attention
weights AQ for each word in the question, and column-wise to produce attention weights AD for
each word in the document:

AQ = softmax(L) ∈ R(N+1)×(M+1),AD = softmax(L⊤) ∈ R(M+1)×(N+1),

then we get Context-to-Question (C2Q) Attention matrix DAQ ∈ RH×(M+1) and Question-to-
Context (Q2C) matrix QAD ∈ RH×(N+1). Finally, Coattention Layer gives the second-level
attention output by using the C2Q distributions as weight to take the sum of Q2C attention outputs.
Namely we have S = DAQAD ∈ RH×(m+1). Let s1, s2, . . . , sN denote the first N columns of S.
Note that the original paper recommends concatenating si with columns C2Q attention outputs, and
feed the concatenated sequence through a bidirectional LSTM. However, in our own experiments we
find such architecture is not only time-consuming but also bring little, if any, improvement. Therefore
here we replace the bidirectional by a simple linear layer. It turns out the resulting performance is
still good as shown in Section 5.

4.4 QANet

Our QANet implementation is mainly based on the original paper by Yu et al. [5] except for some
small modifications. QANet shares many similar components with BiDAF: they both start with word
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and character embedding layer; they use the same bi-directional context-query attention architecture;
and the output layers apply linear transform and masked softmax to the output of model encoders to
produce start and end position predictions. However their encoding mechanisms are different: BiDAF
uses recurrent technique while QANet uses convolution and self-attention exclusively as building
blocks of encoders.

Embedding Layer QANet adapts pretrained 300-dimensional GloVe word vectors as fixed word
embedding and uses the same 2D convolution + ReLU + maxpooling as we do in BiDAF to obtain
200-dimensional learnable character embedding. Two embeddings are concatenated together before
fed into a two-layer highway network introduced by Srivastava et al. [12] and finally linearly projected
from d = 500 to dmodel = 128.

Embedding Encoder Layer An encoder block is in the form [positional encoding + (layernorm +
convolution layer) × n + layernorm + self-attention + layernorm + feed-forward-layer] with residual
connections between each pair of layernorms. We use learnable positional encoding

Encode(x) = x + pos[:, x.size(1), x.size(2)]

where pos is learnable parameters. QANet uses depthwise separable convolutions (Kaiser et al. [13])
for convolution layer:

PointwiseConv(W ,y)(i,j,k) =

M∑
m

W (k)[m]y[i, j,m]

DepthwiseConv(W ,y)(i,j,k) =

M,N∑
i,j

W (k)[i, j] ∗ y[i, j, k]

SepConv(Wp,Wd,y) = PointwiseConv(Wp,DepthwiseConv(Wd,y))

and these can be easily translated into pytorch functions: conv1d with kernel_size=1 for pointwise
convolution and conv1d with (kernel_size=7, padding=3 and groups=128) for depthwise convolution.
Self attention is adopted from multi-head attention by ([7])

Attention(Q,K,V ) = softmax
(
QK⊤
√
dk

)
V

headi = attention(QWQ
i ,KWK

i ,V WV
i ), i = 1, . . . , h

MultiHead(Q,K,V ) = concat(head1, . . . , headh)W
O

where projections are parameters WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , W V
i ∈ Rdmodel×dv , WO ∈

Rhdv×dmodel . In this project we use h = 8, dk = dv = dmodel/h = 16. Feedforward network has the
form

f(x) = ReLU(xW1 + b1)W2 + b2

Residual connections wrap pairs of layernorm and nonlinear layer inside

Residual(f,x) = f(layernorm(x)) + x

Embedding Encode Layer contains one encoder block.

Context-Query Attention Layer Attention mechanism in QANet is the same as in BiDAF. Note
that since the output has shape (seq_len, 4dmodel), we need a linear layer to project output back to
dmodel.

Model Encoder Layer Model encoder uses the same encoder block as embedding encoder layer
but with some different parameters. We use 7 consecutive encoder block instead of 1. Kernel size of
depth-wise convolution is 5. Each block contains 2 convolution layers instead of 4. We propagate
through the 7 blocks three times, and denote them as M1, M2 and M3.

Output Layer Each example in SQuAD is labeled with a span in the context containing the answer.
We predict the probability of each position being the start or end of the answer.

p1 = softmax (W1[M1;M2]) , p2 = softmax (W2[M1;M3])
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4.5 Performer

We discuss the mechanism of Performer [6] in this section. As a variation of the vanilla self-
attention, we require Q,K,V ∈ RL×d from self-attention component. We first generate m samples
ω1, . . . , ωm

i.i.d.∼ D for ω1, . . . , ωm ∈ Rd from an isotropic distribution (usually D = N (0, Id)).
Then we use Gram-Schmidt process to make ω1, . . . , ωm exactly orthogonal such that the variance
of softmax/Gaussian kernel estimators is reduced for large d. We then construct the kernel function
ϕ ∈ Rd → Rml

+ for function f1, . . . , fl : R → R and h : Rd → R such that

ϕ(x) =
h(x)√
m

(f1(ω
⊤
1 x), . . . , f1(ω

⊤
mx), fl(ω

⊤
1 x), . . . , fl(ω

⊤
mx)).

In specific, the softmax-kernel admits a positive random feature map approximation with either of
the following conditions:{

h(x) = exp(− ||x||2
2 ), l = 1, f1(u) = exp(u),

h(x) = 1√
2
exp(− ||x||2

2 ), l = 2, f1(u) = exp(u), f2(u) = exp(−u).

Then let r = ml and compute Q′,K ′ ∈ RL×r
+ where without loss generality, consider Q and Q′:

Q =


q⊤
1

q⊤
2
...

q⊤
L

 ,Q′ =


ϕ(q⊤

1 )
⊤

ϕ(q⊤
2 )

⊤

...
ϕ(q⊤

L )
⊤

 .

Finally, construct D̂ = diag(Q′((K ′)⊤1L)) ∈ RL×L as a normalization matrix and

Attention(Q,K,V )
E
= D̂−1(Q′((K ′)⊤V )).

(Please refer to the whole derivations in [6]. Intuitively, for the softmax operation in self-attention,
we need to compute exp(q⊤k) and

exp(q⊤k) = exp(−||q||2 + ||k||2

2
) exp(

||q + k||2

2
)

= exp(−||q||2 + ||k||2

2
)Eω∼N (0,Id)

[
exp(ω⊤q) exp(ω⊤k)

]

≈
exp(− ||q||2

2 )
√
m


exp(ω⊤

1 q)
exp(ω⊤

2 q)
...

exp(ω⊤
mq)

 ·
exp(− ||k||2

2 )
√
m


exp(ω⊤

1 k)
exp(ω⊤

2 k)
...

exp(ω⊤
mk)

 ,

for large sample size m.)

Notice that if the cost of the last computation is dominant, then A = softmax(QK⊤
√
d

) ∈ RL×L and
AV takes O(L2d) operations, while Q′((K ′)⊤V ) takes O(Lrd+ Lrd+ L) = O(Lrd). The time
complexity is reduced when r ≪ L.

5 Experiments

5.1 Data

We use Stanford Question Answering Dataset (SQuAD) 2.0 dataset [14] for our project. For the
train set, around 68% of the questions are answerable, while for the dev set, only around 48% of the
questions are answerable.

5.2 Evaluation method

We primarily evaluate the model performance by F1 score as F1 score is the performance metric for
rank submissions in the leaderboard and we have known dev F1 score (∼ 58) for the baseline model.
We also leverage Exact Match (EM) score and AvNA as reference metrics to compare models with
different variants.
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5.3 Experimental details

5.3.1 Common Training hyperparameters

Default settings are the same as in the starter code: optimizer = Adadelta, learning_rate = 0.5,
weight_decay = 0, dropout_prob = 0.2, ema_decay = 0.999, batch_size = 32, hidden_size = 128,
char_dim = 200

5.3.2 QANet

In QANet we use learned parameters to achieve positional embedding. So during training we set
maximum sequence length to 800 to account for potential long sequences in test set.

5.3.3 Emsemble

For QANet model with Performer, we have tested with several reduced dimensions m ≤ dmodel/h =
16 and find that the current re-implementation has a relatively large overhead on Gram-Schmidt
process, the computation time is not comparable to direct computation even with small m. We did
not run the model with full number of iterations as the cost becomes unaffordable to us. On the other
hand, the performance of QANet with Performer is inferior to the performance of vanilla QANet
because it originally intends to sacrifice the accuracy of computing the exact self-attention with a
promisingly faster speed. Therefore, we decide not to include QANet with Performer model in the
ensemble model.

Figure 2: The dev plots of BiDAF with DCN.

Figure 3: The dev plots of QANet with self attentioner.

5.4 Results

Models scores on dev and test leaderboards are listed in 1. The leaderboard name is XXL.
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Model EM F1
BiDAF with DCN (dev) 61.855 65.309
BiDAF with DCN (test) 60.845 64.600

QANet (dev) 62.309 65.595
Ensemble (test) 62.688 65.690

Table 1: Experiment Results

6 Analysis

In the following plots 4, we can notice that for the ensemble model evaluating on the dev set, there
are around 9.4% of the answerable examples that are classified wrongly as unanswerable questions
(False Negative) and around 16.8% of the unanswerable examples that are classified wrongly as
answerable questions (False Positive) which is nearly 2 times of the false negative rate. It shows
that one of the main goals that we have to work on is still abstaining the model from answering
unanswerable questions. Within True Positive Examples, around 35.5% examples have issues on the
entire different answer spans (described as disjoint in the plots), which contributes around 92.7% of
the wrong answers. This suggests that we may focus on advanced technique of answer pointer to
further improve our model.

Figure 4: Precision and Recall Barplot of Result for the Ensemble Model at the Dev Set.

7 Conclusion

In this project, we start from the baseline model BiDAF by adding character-level embeddings
and then replace the original bi-directional attention layer by a re-implemented Coattention Layer
introduced in DCN model, which enhances the performance from the baseline model. After that, we
shift gears to re-implement the QANet model and achieve a comparative performance as the modified
BiDAF model. Additionally, we endeavor to re-implement FAVOR+ approach of the Performer
model from scratch. At last, we construct an ensemble model with BiDAF and vanilla QANet model
to maximize the final performance. In the future, we may consider changing our kernel generation
mechanism for the Performer to enhance the speed or alternatively, applying data augmentation
technique to enrich the training data for performance or exploring some advanced pointer decoder
techniques to more effectively recover the answer span and thus, gradually improving the model.
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