
Natural Language Processing
with Deep Learning

CS224N/Ling284

Christopher Manning
Lecture 10:

(Textual) Question Answering Architectures,
Attention and Transformers

Natural Language Processing
with Deep Learning

CS224N/Ling284

Christopher Manning and Richard Socher

Lecture 2: Word Vectors

Mid-quarter feedback survey

Thanks to the many of you (!) who have filled it in!

If you haven’t yet, today is a good time to do it 😉

2

Lecture Plan

Lecture 10: (Textual) Question Answering
1. History/The SQuAD dataset (review)
2. The Stanford Attentive Reader model
3. BiDAF
4. Recent, more advanced architectures
5. Open-domain Question Answering: DrQA
6. Attention revisited; motivating transformers; ELMo and BERT

preview
7. Training/dev/test data
8. Getting your neural network to train

3

1. Turn-of-the Millennium Full NLP QA:
[architecture of LCC (Harabagiu/Moldovan) QA system, circa 2003]
Complex systems but they did work fairly well on “factoid” questions

Question Parse

Semantic
Transformation

Recognition of
Expected Answer
Type (for NER)

Keyword Extraction

Factoid
Question

List
Question

Named Entity
Recognition

(CICERO LITE)

Answer Type
Hierarchy
(WordNet)

Question Processing

Question Parse

Pattern Matching

Keyword Extraction

Question Processing
Definition
Question Definition

Answer

Answer Extraction

Pattern Matching

Definition Answer Processing

Answer Extraction

Threshold Cutoff

List Answer Processing List
Answer

Answer Extraction (NER)

Answer Justification
(alignment, relations)

Answer Reranking

(~ Theorem Prover)

Factoid Answer Processing

Axiomatic Knowledge
Base

Factoid
Answer

Multiple
Definition
Passages

Pattern
Repository

Single Factoid
Passages

Multiple
List

Passages

Passage Retrieval

Document Processing

Document Index

Document
Collection

Stanford Question Answering Dataset (SQuAD)

100k examples
Answer must be a span in the passage
Extractive question answering/reading comprehension

5

(Rajpurkar et al., 2016)

Super Bowl 50 was an American football game to determine the
champion of the National Football League (NFL) for the 2015 season.
The American Football Conference (AFC) champion Denver Broncos
defeated the National Football Conference (NFC) champion Carolina
Panthers 24–10 to earn their third Super Bowl title. The game was
played on February 7, 2016, at Levi's Stadium in the San Francisco Bay
Area at Santa Clara, California.

Question: Which team won Super Bowl 50?

Passage

SQuAD 2.0 No Answer Example

When did Genghis Khan kill Great Khan?
Gold Answers: <No Answer>
Prediction: 1234 [from Microsoft nlnet]

6

2. Stanford Attentive Reader

[Chen, Bolton, & Manning 2016]
[Chen, Fisch, Weston & Bordes 2017] DrQA
[Chen 2018]

• Demonstrated a minimal, highly successful
architecture for reading comprehension and question
answering

• Became known as the Stanford Attentive Reader

7

The Stanford Attentive Reader

8

Which team won Super Bowl 50?Q

Which team won Super 50 ?

…

…

…

Input Output

Passage (P)

Question (Q)

Answer (A)

Stanford Attentive Reader

9

Who did Genghis Khan unite before he
began conquering the rest of Eurasia?

Q

Bidirectional LSTMs

… ……P

… …… !p#

p#

Stanford Attentive Reader

10

Who did Genghis Khan unite before he
began conquering the rest of Eurasia?

Q

… ……

Bidirectional LSTMs

Attention

predict start token

Attention

predict end token

!p#

SQuAD 1.1 Results (single model, c. Feb 2017)

11

F1

Logistic regression 51.0

Fine-Grained Gating (Carnegie Mellon U) 73.3

Match-LSTM (Singapore Management U) 73.7

DCN (Salesforce) 75.9

BiDAF (UW & Allen Institute) 77.3

Multi-Perspective Matching (IBM) 78.7

ReasoNet (MSR Redmond) 79.4

DrQA (Chen et al. 2017) 79.4

r-net (MSR Asia) [Wang et al., ACL 2017] 79.7

Google Brain / CMU (Feb 2018) 88.0

Human performance 91.2

Stanford Attentive Reader++

12

Figure from SLP3: Chapter 23

23.1 • IR-BASED FACTOID QUESTION ANSWERING 9

NewsQA dataset consists of 100,000 question-answer pairs from CNN news arti-
cles, For other datasets like WikiQA the span is the entire sentence containing the
answer (Yang et al., 2015); the task of choosing a sentence rather than a smaller
answer span is sometimes called the sentence selection task.sentence

selection

These reading comprehension datasets are used both as a reading comprehension
task in themselves, and as a training set and evaluation set for the sentence extraction
component of open question answering algorithms.

Basic Reading Comprehension Algorithm. Neural algorithms for reading com-
prehension are given a question q of l tokens q1, ...,ql¡ and a passage p of m tokens
p1, ..., pm. Their goal is to compute, for each token pi the probability pstart(i) that
pi is the start of the answer span, and the probability pend(i), that pi is the end of
the answer span.

Fig. 23.8 shows the architecture of the Document Reader component of the
DrQA system of Chen et al. (2017). Like most such systems, DrQA builds an
embedding for the question, builds an embedding for each token in the passage,
computes a similarity function between the question and each passage word in con-
text, and then uses the question-passage similarity scores to decide where the answer
span starts and ends.

Beyonce’s debut album

LSTM1 LSTM1 LSTM1

LSTM2 LSTM2 LSTM2

GloVe PER

NNP

When did Beyonce

PassageQuestion

LSTM1 LSTM1 LSTM1

LSTM2 LSTM2 LSTM2

GloVe GloVe GloVe

…

Attention

Weighted sum

similarity

q
p2 p3

similarity

q q

similarity

…

q-align1

GloVeGloVe

pstart(1) pend(1) pstart(3) pend(3)… …

…

O
NN

GloVeGloVe

q-align2

1
0

O
NN

0
q-align3

GloVeGloVe

Att Att

p1

p1 p2 p3

~
p1 p2 p3

~ ~

q1 q2 q3

Figure 23.8 The question answering system of Chen et al. (2017), considering part of the question When did
Beyoncé release Dangerously in Love? and the passage starting Beyoncé’s debut album, Dangerously in Love
(2003).

Let’s consider the algorithm in detail, following closely the description in Chen
et al. (2017). The question is represented by a single embedding q, which is a
weighted sum of representations for each question word qi. It is computed by
passing the series of embeddings PE(q1), ...,E(ql) of question words through an
RNN (such as a bi-LSTM shown in Fig. 23.8). The resulting hidden representations
{q1, ...,ql} are combined by a weighted sum

q =
X

j

b jq j (23.9)

Training objective:

13

Stanford Attentive Reader++
(Chen et al., 2018)

Which team won Super Bowl 50?Q

Which team won Super 50 ?

…

…

…

weighted sum

q =&
'

𝑏'q'

For learned 𝐰, 𝑏' =
exp(w 6 q')

∑'9 exp(w 6 q𝒋9)
Deep 3 layer BiLSTM
is better!

Stanford Attentive Reader++
• 𝐩#: Vector representation of each token in passage
Made from concatenation of
• Word embedding (GloVe 300d)
• Linguistic features: POS & NER tags, one-hot encoded
• Term frequency (unigram probability)
• Exact match: whether the word appears in the question

• 3 binary features: exact, uncased, lemma

• Aligned question embedding (“car” vs “vehicle”)

14 Where 𝛼 is a simple one layer FFNN

16

(Chen, Bolton, Manning, 2016)

100 95 90

50

28

100

78 74

50
40

0

33

67

100

Easy Partial Hard/Error

Co
rre

ct
ne

ss
 (%

)

NN Categorical Feature Classifier

13% 41% 2% 25%19%

What do these neural models do?

3. BiDAF: Bi-Directional Attention Flow for Machine Comprehension
(Seo, Kembhavi, Farhadi, Hajishirzi, ICLR 2017)

17

BiDAF – Roughly the CS224N DFP baseline

• There are variants of and improvements to the BiDAF architecture
over the years, but the central idea is the Attention Flow layer

• Idea: attention should flow both ways – from the context to the
question and from the question to the context

• Make similarity matrix (with w of dimension 6d):

• Context-to-Question (C2Q) attention:
(which query words are most relevant to each context word)

18

BiDAF

• Attention Flow Idea: attention should flow both ways – from the
context to the question and from the question to the context

• Question-to-Context (Q2C) attention:
(the weighted sum of the most important words in the context
with respect to the query – slight asymmetry through max)

• For each passage position, output of BiDAF layer is:

19

BiDAF

• There is then a “modelling” layer:
• Another deep (2-layer) BiLSTM over the passage

• And answer span selection is more complex:
• Start: Pass output of BiDAF and modelling layer concatenated

to a dense FF layer and then a softmax
• End: Put output of modelling layer M through another BiLSTM

to give M2 and then concatenate with BiDAF layer and again
put through dense FF layer and a softmax
• Editorial: Seems very complex, but it does seem like you should do a bit

more than Stanford Attentive Reader, e.g., conditioning end also on
start

20

4. Recent, more advanced architectures

Most of the question answering work in 2016–2018 employed
progressively more complex architectures with a multitude of
variants of attention – often yielding good task gains

21

Dynamic Coattention Networks for Question Answering
(Caiming Xiong, Victor Zhong, Richard Socher ICLR 2017)Under review as a conference paper at ICLR 2017

2 DYNAMIC COATTENTION NETWORKS

Figure 1 illustrates an overview of the DCN. We first describe the encoders for the document and
the question, followed by the coattention mechanism and the dynamic decoder which produces the
answer span.

Document encoder Question encoder

What plants create most
electric power?

Coattention encoder

The weight of boilers and condensers generally
makes the power-to-weight ... However, most
electric power is generated using steam turbine
plants, so that indirectly the world's industry
is ...

Dynamic pointer
decoder

start index: 49
end index: 51

steam turbine plants

Figure 1: Overview of the Dynamic Coattention Network.

2.1 DOCUMENT AND QUESTION ENCODER

Let (xQ
1 , xQ

2 , . . . , xQ
n) denote the sequence of word vectors corresponding to words in the question

and (xD
1 , xD

2 , . . . , xD
m) denote the same for words in the document. Using an LSTM (Hochreiter

& Schmidhuber, 1997), we encode the document as: dt = LSTMenc

�
dt�1, xD

t

�
. We define the

document encoding matrix as D = [d1 . . . dn d?] 2 R`⇥(m+1). We also add a sentinel vector d?
(Merity et al., 2016), which we later show allows the model to not attend to any particular word in
the input.

The question embeddings are computed with the same LSTM to share representation power: qt =

LSTMenc

⇣
qt�1, x

Q
t

⌘
. We define an intermediate question representation Q0

= [q1 . . . qm q?] 2
R`⇥(n+1). To allow for variation between the question encoding space and the document encod-
ing space, we introduce a non-linear projection layer on top of the question encoding. The final
representation for the question becomes: Q = tanh

�
W (Q)Q0

+ b(Q)
�
2 R`⇥(n+1).

2.2 COATTENTION ENCODER

We propose a coattention mechanism that attends to the question and document simultaneously,
similar to (Lu et al., 2016), and finally fuses both attention contexts. Figure 2 provides an illustration
of the coattention encoder.

We first compute the affinity matrix, which contains affinity scores corresponding to all pairs of
document words and question words: L = D>Q 2 R(m+1)⇥(n+1). The affinity matrix is nor-
malized row-wise to produce the attention weights AQ across the document for each word in the
question, and column-wise to produce the attention weights AD across the question for each word
in the document:

AQ
= softmax (L) 2 R(m+1)⇥(n+1) and AD

= softmax
�
L>� 2 R(n+1)⇥(m+1) (1)

Next, we compute the summaries, or attention contexts, of the document in light of each word of the
question.

CQ
= DAQ 2 R`⇥(n+1). (2)

2

• Flaw: Questions have input-independent representations
• Interdependence needed for a comprehensive QA model

Coattention Encoder
Under review as a conference paper at ICLR 2017

AQ

ADdocument

product

concat

product

bi-LSTM bi-LSTM bi-LSTM bi-LSTM bi-LSTM

concat

n+1

m+1

D:

Q:
CQ

CD

utU:

�

�

Figure 2: Coattention encoder. The affinity matrix L is not shown here. We instead directly show
the normalized attention weights AD and AQ.

We similarly compute the summaries QAD of the question in light of each word of the document.
Similar to Cui et al. (2016), we also compute the summaries CQAD of the previous attention con-
texts in light of each word of the document. These two operations can be done in parallel, as is
shown in Eq. 3. One possible interpretation for the operation CQAD is the mapping of question
encoding into space of document encodings.

CD
=

⇥
Q; CQ

⇤
AD 2 R2`⇥(m+1). (3)

We define CD, a co-dependent representation of the question and document, as the coattention
context. We use the notation [a; b] for concatenating the vectors a and b horizontally.

The last step is the fusion of temporal information to the coattention context via a bidirectional
LSTM:

ut = Bi-LSTM
�
ut�1, ut+1,

⇥
dt; c

D
t

⇤�
2 R2`. (4)

We define U = [u1, . . . , um] 2 R`⇥m , which provides a foundation for selecting which span may
be the best possible answer, as the coattention encoding.

2.3 DYNAMIC POINTING DECODER

Due to the nature of SQuAD, an intuitive method for producing the answer span is by predicting
the start and end points of the span (Wang & Jiang, 2016). However, given a question-document
pair, there may exist several intuitive answer spans within the document, each corresponding to a
local maxima. We propose an iterative technique to select an answer span by alternating between
predicting the start point and predicting the end point. This iterative procedure allows the model to
recover from initial local maxima corresponding to incorrect answer spans.

Figure 3 provides an illustration of the Dynamic Decoder, which is similar to a state machine whose
state is maintained by an LSTM-based sequential model. During each iteration, the decoder updates
its state taking into account the coattention encoding corresponding to current estimates of the start
and end positions, and produces, via a multilayer neural network, new estimates of the start and end
positions.

Let hi, si, and ei denote the hidden state of the LSTM, the estimate of the position, and the estimate
of the end position during iteration i. The LSTM state update is then described by Eq. 5.

hi = LSTM dec

�
hi�1,

⇥
usi�1 ; uei�1

⇤�
(5)

where usi�1 and uei�1 are the representations corresponding to the previous estimate of the start and
end positions in the coattention encoding U .

3

Coattention layer

• Coattention layer again provides a two-way attention between
the context and the question

• However, coattention involves a second-level attention
computation:
• attending over representations that are themselves attention

outputs
• We use the C2Q attention distributions αi to take weighted sums

of the Q2C attention outputs bj. This gives us second-level
attention outputs si:

24

Co-attention: Results on SQUAD Competition

Under review as a conference paper at ICLR 2017

end positions of the answer span in a single pass (Wang & Jiang, 2016), we iteratively update the
start and end positions in a similar fashion to the Iterative Conditional Modes algorithm (Besag,
1986).

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We train and evaluate our model on the SQuAD dataset. To preprocess the corpus, we use the
tokenizer from Stanford CoreNLP (Manning et al., 2014). We use as GloVe word vectors pre-
trained on the 840B Common Crawl corpus (Pennington et al., 2014). We limit the vocabulary
to words that are present in the Common Crawl corpus and set embeddings for out-of-vocabulary
words to zero. Empirically, we found that training the embeddings consistently led to overfitting and
subpar performance, and hence only report results with fixed word embeddings.

We use a max sequence length of 600 during training and a hidden state size of 200 for all recurrent
units, maxout layers, and linear layers. For the dynamic decoder, we set the maximum number of
iterations to 4 and use a maxout pool size of 32. We use dropout to regularize our network during
training (Srivastava et al., 2014), and optimize the model using ADAM (Kingma & Ba, 2014). All
models are implemented and trained with Chainer (Tokui et al., 2015).

4.2 RESULTS

Evaluation on the SQuAD dataset consists of two metrics. The exact match score (EM) calculates
the exact string match between the predicted answer and a ground truth answer. The F1 score
calculates the overlap between words in the predicted answer and a ground truth answer. Because
a document-question pair may have several ground truth answers, the EM and F1 for a document-
question pair is taken to be the maximum value across all ground truth answers. The overall metric
is then computed by averaging over all document-question pairs. The offical SQuAD evaluation is
hosted on CodaLab 2. The training and development sets are publicly available while the test set is
withheld.

Model Dev EM Dev F1 Test EM Test F1

Ensemble
DCN (Ours) 70.3 79.4 71.2 80.4

Microsoft Research Asia ⇤ � � 69.4 78.3
Allen Institute ⇤ 69.2 77.8 69.9 78.1
Singapore Management University ⇤ 67.6 76.8 67.9 77.0
Google NYC ⇤ 68.2 76.7 � �
Single model
DCN (Ours) 65.4 75.6 66.2 75.9

Microsoft Research Asia ⇤ 65.9 75.2 65.5 75.0
Google NYC ⇤

66.4 74.9 � �
Singapore Management University ⇤ � � 64.7 73.7
Carnegie Mellon University ⇤ � � 62.5 73.3
Dynamic Chunk Reader (Yu et al., 2016) 62.5 71.2 62.5 71.0
Match-LSTM (Wang & Jiang, 2016) 59.1 70.0 59.5 70.3
Baseline (Rajpurkar et al., 2016) 40.0 51.0 40.4 51.0

Human (Rajpurkar et al., 2016) 81.4 91.0 82.3 91.2

Table 1: Leaderboard performance at the time of writing (Nov 4 2016). ⇤ indicates that the model
used for submission is unpublished. � indicates that the development scores were not publicly
available at the time of writing.

2https://worksheets.codalab.org

6

Results are at time of ICLR submission
See https://rajpurkar.github.io/SQuAD-explorer/ for latest results

https://rajpurkar.github.io/SQuAD-explorer/

FusionNet (Huang, Zhu, Shen, Chen 2017)

Bilinear (Product) form:

𝑆#' = 𝑐#?𝑊𝑞'

𝑆#' = 𝑐#?𝑈?𝑉𝑞'

𝑆#' = 𝑐#?𝑊?𝐷𝑊𝑞'

𝑆#' = 𝑅𝑒𝑙𝑢(𝑐#?𝑊?)𝐷𝑅𝑒𝑙𝑢(𝑊𝑞')

MLP (Additive) form:
𝑆#' = 𝑠?tanh(𝑊L𝑐# +𝑊N𝑞')

1. Smaller space

2. Non-linearity

Space: O(mnk), W is kxd

Space: O((m+n)k)

Attention functions

𝑆#' = 𝑈𝑐# ?(𝑉𝑞')

FusionNet tries to combine many forms of
attention

Multi-level inter-attention

After multi-level inter-attention, use RNN, self-attention
and another RNN to obtain the final representation of
context: {𝒖#Q}

Recent, more advanced architectures

• Most of the question answering work in 2016–2018 employed
progressively more complex architectures with a multitude of
variants of attention – often yielding good task gains

29

SQuAD limitations

• SQuAD has a number of key limitations:
• Only span-based answers (no yes/no, counting, implicit why)
• Questions were constructed looking at the passages
• Not genuine information needs
• Generally greater lexical and syntactic matching between questions

and answer span than you get IRL

• Barely any multi-fact/sentence inference beyond coreference

• Nevertheless, it is a well-targeted, well-structured, clean dataset
• It has been the most used and competed on QA dataset
• It has also been a useful starting point for building systems in

industry (though in-domain data always really helps!)
• And we’re using it (SQuAD 2.0)

30

Document
Reader

Document
Retriever

833,500

Q: How many of Warsaw's inhabitants
spoke Polish in 1933?

5. Open-domain Question Answering
DrQA (Chen, et al. ACL 2017) https://arxiv.org/abs/1704.00051

31

Document Retriever

32

For 70–86% of questions, the answer
segment appears in the top 5 articles

Traditional
tf.idf

inverted
index +

efficient
bigram

hash

DrQA Demo

33

General questions
Combined with Web search, DrQA can
answer 57.5% of trivia questions correctly

34

Q: The Dodecanese Campaign of WWII that was an
attempt by the Allied forces to capture islands in the
Aegean Sea was the inspiration for which acclaimed 1961
commando film?

Q: American Callan Pinckney’s eponymously named
system became a best-selling (1980s-2000s) book/video
franchise in what genre?

A: Fitness

A: The Guns of Navarone

6. LSTMs, attention, and transformers intro

35

SQuAD v1.1 leaderboard, 2019-02-07

36

@ log p(xt+n|x<t+n)

@ht
=

@ log p(xt+n|x<t+n)

@g

@g

@ht+n

@ht+n

@ht+n�1
· · · @ht+1

@ht

2020-02-0637

Intuitively, what happens with RNNs?

1. Measure the influence of the past on the future

2. How does the perturbation at affect ?

xt

p(xt+n|x<t+n)

✏

?
t

Gated Recurrent Units, again

2020-02-0638

• The signal and error must propagate through all the
intermediate nodes:

• Perhaps we can create shortcut connections.

Gated Recurrent Units : LSTM & GRU

2020-02-0639

• Perhaps we can create adaptive shortcut connections.
• Let the net prune unnecessary connections adaptively.

• Candidate Update
• Reset gate
• Update gate

Gated Recurrent Unit

h̃t = tanh(W [xt] + U(rt � ht�1) + b)

rt = �(Wr [xt] + Urht�1 + br)
ut = �(Wu [xt] + Uuht�1 + bu)

�: element-wise multiplication

2020-02-0640

tanh-RNN ….

Execution
Registers

1. Read the whole register

h

2. Update the whole register

h

h tanh(W [x] + Uh+ b)

Gated Recurrent Unit

2020-02-0641

GRU …

Execution
Registers

1. Select a readable subset

h

r
r � h2. Read the subset

3. Select a writable subset u
4. Update the subset

h u� h̃+ (1� ut)� h

Gated recurrent units are much more realistic for computation!

Gated Recurrent Unit

Gated Recurrent Unit
[Cho et al., EMNLP2014;
Chung, Gulcehre, Cho, Bengio,

DLUFL2014]

Long Short-Term Memory
[Hochreiter & Schmidhuber, NC1999;
Gers, Thesis2001]

42

Gated Recurrent Units: LSTM & GRU

ht = ut � h̃t + (1� ut)� ht�1

h̃ = tanh(W [xt] + U(rt � ht�1) + b)

ut = �(Wu [xt] + Uuht�1 + bu)

rt = �(Wr [xt] + Urht�1 + br)

ht = ot � tanh(ct)

ct = ft � ct�1 + it � c̃t

c̃t = tanh(Wc [xt] + Ucht�1 + bc)

ot = �(Wo [xt] + Uoht�1 + bo)

it = �(Wi [xt] + Uiht�1 + bi)

ft = �(Wf [xt] + Ufht�1 + bf)

Two most widely used gated recurrent units: GRU and LSTM

h̃t = tanh(W [xt] + U(rt � ht�1) + b)

Attention Mechanism

• A second solution: random access memory
• Retrieve past info as needed (but usually average)
• Usually do content-similarity based addressing
• Other things like positional are occasionally tried

am a student _ Je suis étudiant

Je suis étudiant _

I

Pool of
source
states

43

Started in computer vision!
[Larochelle & Hinton, 2010],
[Denil, Bazzani, Larochelle,

Freitas, 2012]
Became famous in NMT/NLM

44

ELMo and BERT preview

The transformer architecture
used in BERT is sort of attention
on steroids.

Contextual word representations
Using language model-like objectives

Elmo
(Peters et al, 2018) Bert

(Devlin et al, 2018)

(Vaswani et al, 2017)
Look at SDNet as an example of how to use BERT as
submodule: https://arxiv.org/abs/1812.03593

The Motivation for Transformers

• We want parallelization but RNNs are inherently sequential

• Despite LSTMs, RNNs generally need attention mechanism to
deal with long range dependencies – path length between
states grows with distance otherwise

• But if attention gives us access to any state… maybe we can just
use attention and don’t need the RNN?

• And then NLP can have deep models … and solve our vision envy
45

Transformer (Vaswani et al. 2017)
“Attention is all you need”
https://arxiv.org/pdf/1706.03762.pdf
• Non-recurrent sequence (or

sequence-to-sequence) model
• A deep model with a sequence of

attention-based transformer blocks
• Depth allows a certain amount of

lateral information transfer in
understanding sentences, in slightly
unclear ways

• Final cost/error function is
standard cross-entropy error
on top of a softmax classifier

Initially built for NMT
46

12x

12x

Softmax

Transformer block

Each block has two “sublayers”
1. Multihead attention
2. 2-layer feed-forward NNet (with ReLU)

Each of these two steps also has:
Residual (short-circuit) connection
LayerNorm (scale to mean 0, var 1; Ba et al. 2016)

47

Multi-head (self) attention

48

With simple self-attention: Only one way for a word to
interact with others

Solution: Multi-head attention

Map input into ℎ = 12many lower
dimensional spaces via 𝑊V matrices

Then apply attention, then concatenate
outputs and pipe through linear layer

Multihead 𝑥# [= Concat(ℎ𝑒𝑎𝑑')𝑊`

ℎ𝑒𝑎𝑑' = Attention(𝑥# [𝑊'b, 𝑥# [𝑊'c, 𝑥# [𝑊'd)

So attention is like bilinear: 𝑥# [(𝑊'
b(𝑊'c)?)𝑥#(e)

𝑥#([)

𝑥#fL([)

Encoder Input

Actual word representations are word pieces (byte pair encoding)
• Topic of next week

Also added is a positional encoding so same words at different
locations have different overall representations:

49

BERT: Devlin, Chang, Lee, Toutanova (2018)

BERT (Bidirectional Encoder Representations from Transformers):
Pre-training of Deep Bidirectional Transformers for Language
Understanding, which is then fine-tuned for a particular task

Pre-training uses a cloze task formulation where 15% of words are
masked out and predicted:

store gallon
↑ ↑

the man went to the [MASK] to buy a [MASK] of milk

50

Transformer (Vaswani et al. 2017)
BERT (Devlin et al. 2018)

Judiciary Committee [MASK] Report[CLS] 0 1 2 3 4

h0,0 h0,1 h0,2 h0,3 h0,4

+ ++++

V0K0Q0 V1K1Q1 V2K2Q2 V3K3Q3 V4K4Q4

… …12 x

7. Pots of data

• Many publicly available datasets are released with a
train/dev/test structure. We're all on the honor system to do
test-set runs only when development is complete.

• Splits like this presuppose a fairly large dataset.
• If there is no dev set or you want a separate tune set, then you

create one by splitting the training data, though you have to
weigh its size/usefulness against the reduction in train-set size.

• Having a fixed test set ensures that all systems are assessed
against the same gold data. This is generally good, but it is
problematic where the test set turns out to have unusual
properties that distort progress on the task.

52

Training models and pots of data

• When training, models overfit to what you are training on
• The model correctly describes what happened to occur in

particular data you trained on, but the patterns are not
general enough patterns to be likely to apply to new data

• The way to monitor and avoid problematic overfitting is using
independent validation and test sets …

53

Training models and pots of data

• You build (estimate/train) a model on a training set.
• Often, you then set further hyperparameters on another,

independent set of data, the tuning set
• The tuning set is the training set for the hyperparameters!

• You measure progress as you go on a dev set (development test
set or validation set)
• If you do that a lot you overfit to the dev set so it can be good

to have a second dev set, the dev2 set
• Only at the end, you evaluate and present final numbers on a

test set
• Use the final test set extremely few times … ideally only once

54

Training models and pots of data

• The train, tune, dev, and test sets need to be completely distinct
• It is invalid to test on material you have trained on

• You will get a falsely good performance. We usually overfit on train

• You need an independent tuning set
• The hyperparameters won’t be set right if tune is same as train

• If you keep running on the same evaluation set, you begin to
overfit to that evaluation set
• Effectively you are “training” on the evaluation set … you are learning

things that do and don’t work on that particular eval set and using the info

• To get a valid measure of system performance you need another
untrained on, independent test set … hence dev2 and final test

55

8. Getting your neural network to train

• Start with a positive attitude!
• Neural networks want to learn!
• If the network isn’t learning, you’re doing something to prevent it

from learning successfully

• Realize the grim reality:
• There are lots of things that can cause neural nets to not

learn at all or to not learn very well
• Finding and fixing them (“debugging and tuning”) can often take more

time than implementing your model

• It’s hard to work out what these things are
• But experience, experimental care, and rules of thumb help!

56

Models are sensitive to learning rates

• From Andrej Karpathy, CS231n course notes

57

Models are sensitive to initialization

• From Michael Nielsen
http://neuralnetworksanddeeplearning.com/chap3.html

58

Training a gated RNN

1. Use an LSTM or GRU: it makes your life so much simpler!
2. Initialize recurrent matrices to be orthogonal
3. Initialize other matrices with a sensible (small!) scale
4. Initialize forget gate bias to 1: default to remembering
5. Use adaptive learning rate algorithms: Adam, AdaDelta, …
6. Clip the norm of the gradient: 1–5 seems to be a reasonable

threshold when used together with Adam or AdaDelta.
7. Either only dropout vertically or look into using Bayesian

Dropout (Gal and Gahramani – not natively in PyTorch)
8. Be patient! Optimization takes time

59

[Saxe et al., ICLR2014;
Ba, Kingma, ICLR2015;

Zeiler, arXiv2012;
Pascanu et al., ICML2013]

Experimental strategy

• Work incrementally!
• Start with a very simple model and get it to work!

• It’s hard to fix a complex but broken model
• Add bells and whistles one-by-one and get the model working

with each of them (or abandon them)

• Initially run on a tiny amount of data
• You will see bugs much more easily on a tiny dataset
• Something like 4–8 examples is good
• Often synthetic data is useful for this
• Make sure you can get 100% on this data
• Otherwise your model is definitely either not powerful enough or it is

broken
60

Experimental strategy

• Run your model on a large dataset
• It should still score close to 100% on the training data after

optimization
• Otherwise, you probably want to consider a more powerful model
• Overfitting to training data is not something to be scared of when

doing deep learning
• These models are usually good at generalizing because of the way

distributed representations share statistical strength regardless of
overfitting to training data

• But, still, you now want good generalization performance:
• Regularize your model until it doesn’t overfit on dev data
• Strategies like L2 regularization can be useful
• But normally generous dropout is the secret to success

61

Details matter!

• Look at your data, collect summary statistics

• Look at your model’s outputs, do error analysis

• Tuning hyperparameters is really important to almost
all of the successes of NNets

62

Good luck with your projects!

63

