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Lecture Plan

Lecture 1: Introduction and Word Vectors
The course (10 mins)

Human language and word meaning (15 mins)
Word2vec introduction (15 mins)

Word2vec objective function gradients (25 mins)
Optimization basics (5 mins)

o U A W bhe

Looking at word vectors (10 mins or less)

Key learning today: The (really surprising!) result that word meaning can be represented
rather well by a (high-dimensional) vector of real numbers
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Course logistics in brief

e Instructor: Christopher Manning

e Head TA: Anna Goldie

e Coordinator: Amelie Byun

e TAs: Many wonderful people! See website

e Time: Tu/Th 3:15-4:45 Pacific time, Zoom U. (=2 video)

e We've put a lot of other important information on the class webpage. Please read it!

e http://cs224n.stanford.edu/
a.k.a., http://www.stanford.edu/class/cs224n/
e TAs, syllabus, help sessions/office hours, Ed (for all course questions/discussion)

e Office hours start Thursday evening!
e Python/numpy and then PyTorch tutorials: First two Fridays 1:30-2:30 Pacific time on Zoom U.

 Slide PDFs uploaded before each lecture
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What do we hope to teach? (A.k.a. “learning goals”)

The foundations of the effective modern methods for deep learning applied to NLP

e Basics first, then key methods used in NLP: Word vectors, feed-forward networks,
recurrent networks, attention, encoder-decoder models, transformers, etc.

A big picture understanding of human languages and the difficulties in understanding
and producing them via computers

An understanding of and ability to build systems (in PyTorch) for some of the major
problems in NLP:

* Word meaning, dependency parsing, machine translation, question answering




Course work and grading policy

e 5x1-week Assignments: 6% + 4 x 12%: 54%
e HW1 is released today! Due next Tuesday! At 3:15 p.m.
e Submitted to Gradescope in Canvas (i.e., using @stanford.edu email for your Gradescope account)

e Final Default or Custom Course Project (1-3 people): 43%

e Project proposal: 5%, milestone: 5%, poster or web summary: 3%, report: 30%
e Participation: 3%

* Guest lecture reactions, Ed, course evals, karma — see website!
e Late day policy

* 6 free late days; afterwards, 1% off course grade per day late
e Assignments not accepted more than 3 days late per assignment unless given permission in advance

e Collaboration policy: Please read the website and the Honor Code!
Understand allowed collaboration and how to document it: Don’t take code off the

web; acknowledge working with other students; write your own assignment solutions




High-Level Plan for Assignments (to be completed individually!)

e Assl is hopefully an easy on ramp — a Jupyter/IPython Notebook

e Ass2 is pure Python (numpy) but expects you to do (multivariate) calculus so you really
understand the basics

e Ass3 introduces PyTorch, building a feed-forward network for dependency parsing
e Assd and Ass5 use PyTorch on a GPU (Microsoft Azure)

e Libraries like PyTorch and Tensorflow are now the standard tools of DL
e For Final Project, more details presented later, but you either:

e Do the default project, which is a question answering system
* Open-ended but an easier start; a good choice for many

* Propose a custom final project, which we approve
* You will receive feedback from a mentor (TA/prof/postdoc/PhD)

e Can work in teams of 1-3; can use any language/packages




Lecture Plan

The course (10 mins)

Human language and word meaning (15 mins)
Word2vec introduction (15 mins)

Word2vec objective function gradients (25 mins)
Optimization basics (5 mins)

o U s whe

Looking at word vectors (10 mins or less)
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Trained on text data, neural machine translation is quite good!

' U' G NEWS PLATFORM a https://kiswahili.tuko.co.ke/

Malawi yawapoteza mawaziri 2 kutokana na maafa ya COVID-19

TUKO.co.ke imefahamishwa kuwa waziri wa serikali ya mitaa Lingson Belekanyama na mwenzake wa
uchukuzi Sidik Mia walifariki dunia ndani ya saa mbili tofauti.

Swabhili English ¢ X

Google Translate
L

Malawi loses 2 ministers due to COVID-19 disaster

TUKO.co.ke has been informed that local government minister Lingson Belekanyama and his transport
counterpart Sidik Mia died within two separate hours.




GPT-3: A first step on the path to foundation models @OpenAI

The SEC said, “Musk, your tweets are a S: | broke the window.
blight. Q: What did I break?

S: | gracefully saved the day.
Q: What did | gracefully save?
S: | gave John flowers.

They really could cost you your job,
if you don't stop all this tweeting at night.”

Then Musk cried, “Why? Q: Who did | give flowers to?
The tweets | wrote are not mean, S:1gave her a rose and a guitar.
| don't use a//-caps Q: Who did | give a rose and a guitar to?

I V4
and I'm sure that my tweets are clean. How many users have signed up since the start of 2020?

“But your tweets can move markets SELECT count(id) FROM users
and that's why we're sore. WHERE created_at > ‘2020-01-01

. T . What is the average number of influencers each user is
You may be a genius and a billionaire, .
subscribed to?

but it doesn't give you the right to SELECT avg(count) FROM ( SELECT user_id, count(*)

be a bore!” FROM subscribers GROUP BY user _id )
AS avg_subscriptions_per_user




How do we represent the meaning of a word?

Definition: meaning (Webster dictionary)

 theidea that is represented by a word, phrase, etc.
* theidea that a person wants to express by using words, signs, etc.

* theidea that is expressed in a work of writing, art, etc.

Commonest linguistic way of thinking of meaning:

[ signifier (symbol) < signified (idea or thing) ]

= denotational semantics

{ tree@{é % , e} ]

I 13



How do we have usable meaning in a computer?

Previously commonest NLP solution: Use, e.g., WordNet, a thesaurus containing lists of

synonym sets and hypernyms (“is a” relationships)

14

e.g., synonym sets containing “good”:

from nltk.corpus import wordnet as wn
poses = { 'n':'noun', 'v':'verb', 's':'adj (s)', 'a':'adj', 'r':'adv'}
for synset in wn.synsets("good"):
print("{}: {}".format(poses[synset.pos()],
", ".join([l.name() for 1 in synset.lemmas()])))

noun: good

noun: good, goodness

noun: good, goodness

noun: commodity, trade_good, good
adj: good

adj (sat): full, good

adj: good

adj (sat): estimable, good, honorable, respectable
adj (sat): beneficial, good

adj (sat): good

adj (sat): good, just, upright

adverb: well, good
adverb: thoroughly, soundly, good

e.g., hypernyms of “panda”:

from nltk.corpus import wordnet as wn
panda = wn.synset("panda.n.01")

hyper = lambda s: s.hypernyms()
list(panda.closure(hyper))

[Synset('procyonid.n.01'),
Synset('carnivore.n.01'),
Synset('placental.n.01'),
Synset('mammal.n.01'),
Synset('vertebrate.n.01'),
Synset('chordate.n.01'),
Synset('animal.n.01'),
Synset('organism.n.01'),
Synset('living_thing.n.01'),
Synset('whole.n.02'),
Synset('object.n.01'),
Synset('physical_entity.n.01'),
Synset('entity.n.01')]




Problems with resources like WordNet

* A useful resource but missing nuance:

 e.g., “proficient” is listed as a synonym for “good”
This is only correct in some contexts

* Also, WordNet list offensive synonyms in some synonym sets without any
coverage of the connotations or appropriateness of words

* Missing new meanings of words:
* e.g., wicked, badass, nifty, wizard, genius, ninja, bombest
* Impossible to keep up-to-date!
* Subjective
* Requires human labor to create and adapt
e Can’t be used to accurately compute word similarity (see following slides)

15




Representing words as discrete symbols

In traditional NLP, we regard words as discrete symbols:
hotel, conference, motel — a localist representation

Means one 1, the rest Os

!

Such symbols for words can be represented by one-hot vectors:
motel=[000000000010000]

hotel=[000000010000000]

Vector dimension = number of words in vocabulary (e.g., 500,000+)

I 16



Problem with words as discrete symbols

Example: in web search, if a user searches for “Seattle motel”, we would like to match
documents containing “Seattle hotel”

But:

motel=[000000000010000]
hotel=[000000010000000]

These two vectors are orthogonal
There is no natural notion of similarity for one-hot vectors!

Solution:
e Could try to rely on WordNet’s list of synonyms to get similarity?

e |nstead: learn to encode similarity in the vectors themselves
17

I e But it is well-known to fail badly: incompleteness, etc.



Representing words by their context

e Distributional semantics: A word’s meaning is given
by the words that frequently appear close-by

* “You shall know a word by the company it keeps” (J. R. Firth 1957: 11)
* One of the most successful ideas of modern statistical NLP!

* When a word w appears in a text, its context is the set of words that appear nearby
(within a fixed-size window).

* We use the many contexts of w to build up a representation of w

...government debt problems turning info banking crises as happened in 20089...
...saying that Europe needs unified banking regulation fo replace the hodgepodge...
...India has just given its banking system a shoft in the arm...

N\ /

18 These context words will represent banking




Word vectors

We will build a dense vector for each word, chosen so that it is similar to vectors of words
that appear in similar contexts, measuring similarity as the vector dot (scalar) product

a N e N
0.286 0.413
0.792 0.582
-0.177 -0.007
banking = -0.107 monetary = 0.247
0.109 0.216
-0.542 -0.718
0.349 0.147
\_ 0'271j \_ O.OSlJ

Note: word vectors are also called (word) embeddings or (neural) word representations
They are a distributed representation

19




Word meaning as a neural word vector — visualization

20

expect =

" 0286 )

0.792
-0.177
-0.107

0.109
-0.542

0.349

0.271

\_ 0.487 .

need help
come
go
take
~ \ee
give keep
make get
ee i
meet — continue
expect want become
think
say remain
are .
is
be
Wergas
being
been
haq
has
have




3. Word2vec: Overview

Word2vec (Mikolov et al. 2013) is a framework for learning word vectors

ldea:
e We have a large corpus (“body”) of text: a long list of words
e Every word in a fixed vocabulary is represented by a vector

e Go through each position t in the text, which has a center word ¢ and context
(“outside”) words o

e Use the similarity of the word vectors for ¢ and o to calculate the probability of o given
¢ (or vice versa)

e Keep adjusting the word vectors to maximize this probability

21




Word2Vec Overview

Example windows and process for computing P(WH_]- | Wt)

P(We—z | wr) P(Weip | we)

P(we—q | we) P(Weiq | we)

problems  turning banking crises  as

: Y A e \ Y J
outside context words center word outside context words
in window of size 2 at positiont in window of size 2

22




Word2Vec Overview

Example windows and process for computing P(WH_]- | Wt)

problems  turning crises  as

Y Y | Y )
outside context words center word outside context words
in window of size 2 at positiont in window of size 2

23




Word2vec: objective function

For each positiont = 1, ..., T, predict context words within a window of fixed size m,

given center word w,. Data likelihood:
T

Likelihood = L(8) =l l l l P(Wesj | we; 6)

0 is all variables ‘ t=1 —m=j=m
to be optimized J#0

l sometimes called a cost or loss function

The objective function J(@) is the (average) negative log likelihood:

1
J(©) = —1ogL(8) = - z z log P(Wi.; | we; 0)

—-msjs<m
Jj#0

I Minimizing objective function & Maximizing predictive accuracy
24



Word2vec: objective function

We want to minimize the objective function:

T
1
J@O==2>" > logP(we; | we;6)

t=1-msjsm
j#0

* Question: How to calculate P(WH]- | We; 9) ?

 Answer: We will use two vectors per word w:
* 1, when wis a center word
* u,, when w is a context word

e Then for a center word ¢ and a context word o:

exp(uovc)
Dwey €XP (ul,ve)

P(o|c) =

25




Word2Vec with Vectors

* Example windows and process for computing P(WH]- | Wt)
. P(upmblems | vmto) short for P(problems | into ; Uproblems: Vintos 9)

T

All words vectors 6
appear in denominator

P(up'roblems 1 ) P(ucriSiS |vlnt0)

P(utuning | Vinto Plu anking |vinto)

problems  turning banking crises  as

: Y A e \ Y J
outside context words center word outside context words
in window of size 2 at positiont in window of size 2

26




Word2vec: prediction function

(2 Exponentiation makes anything positive
@ Dot product compares similarity of o and c.

0 —
P(olc) = = Larger dot product Iarger probability

ZWEV exp (uwvc)
\ 3 Normalize over entire vocabulary

to give probability distribution

 This is an example of the softmax function R" — (0,1)™ «~—_ Open

exp (X region
softmax(x;) = p(x) = p;
] =1 exp(x])

* The softmax function maps arbitrary values x; to a probability distribution p;

* “max” because amplifies probability of largest x;
" e . . . \ But sort of a weird name
* “soft” because still assigns some probability to smaller x; because it returns a distribution|

* Frequently used in Deep Learning

27




To train the model: Optimize value of parameters to minimize loss

To train a model, we gradually adjust parameters to minimize a loss

_ - z:x2-2y2
* Recall: 8 represents all the Vaardoark P ———
model parameters, in one Va e ' =
long vector : O e
e |n our case, with " — i 4 € 3
. . 0 — zebra c RQdV o] [ [ T
d-dimensional vectors and Ugardoark TR
V-many words, we have - Ug -
e Remember: every word has ; R
two vectors Unotra . :

e We optimize these parameters by walking down the gradient (see right figure)

e We compute all vector gradients!
28
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5. Optimization: Gradient Descent

33

We have a cost function J(8) we want to minimize
Gradient Descent is an algorithm to minimize J(8)

Idea: for current value of 6, calculate gradient of J(8), then take small step in direction
of negative gradient. Repeat.

Cost
A Note: Our
objectives
| may not
Learning step be convex
like this ®

But life turns
out to be
okay ©

Minimum

Random
initial value

D>



Gradient Descent

e Update equation (in matrix notation):

prew — Hold . CVV@J(Q)
I

a = step size or learning rate

e Update equation (for single parameter):

new __ pold
07 = 05" — g J (0)

e Algorithm:

while True:
theta grad = evaluate gradient(J,corpus,theta)
theta = theta - alpha * theta grad

34




Stochastic Gradient Descent

* Problem: J(6) is a function of all windows in the corpus (potentially billions!)
e So VgJ(0) is very expensive to compute
* You would wait a very long time before making a single update!

 Very bad idea for pretty much all neural nets!

e Solution: Stochastic gradient descent (SGD)
e Repeatedly sample windows, and update after each one

e Algorithm:

while True:
window = sample window(corpus)
theta grad = evaluate gradient(J,window,theta)
theta = theta - alpha * theta grad

35




Lecture Plan

The course (10 mins)

Human language and word meaning (15 mins)
Word2vec introduction (15 mins)

Word2vec objective function gradients (25 mins)
Optimization basics (5 mins)

o U s whe

Looking at word vectors (10 mins or less)
e See Jupyter Notebook
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4. Word2vec derivations of gradient

e Zoom U. Whiteboard — see video or revised slides
* The basic Lego piece: The chain rule
 Useful basic fact:

OxT a Dalx
= = = — a
OX 00X

e |fin doubt: write it out with indices




Chain Rule

Chain rule! If y = f(u) and u =g(x), i.e., y = flg(x)), then:

dy _ dydu __ df(u) dg(x)

dr  du dx du dx
Simple example: @ _ i5 34 74
dx dx (@7 +7)
y = f(u) = 5u* u=g(x)=a°+7
dy 3 du ., o
T 20u = 3T

dy

— = 20(x> + 7)°.3x*

I (x> + 7). 3x
39




Interactive Whiteboard Session!

10 =73 S logp(wiglw)

t=1 —m<;j<m,j#0

Let’s derive gradient for center word together
For one example window and one example outside word:

logp(o|c) = log exp(io_ve)
11//v=1 exp(u,, ' v,)

You then also need the gradient for context words (it’s similar;
I left for homework). That’s all of the parameters 6 here.
40




Calculating all gradients!

e We went through the gradient for each center vector vin a window
e We also need gradients for outside vectors u
* Derive at home!

e Generally, in each window we will compute updates for all parameters that are being
used in that window. For example:

P(uturning |vbanking) P(uas |vbanking)
P(uinto | vbanking) P(ucrises |vbanking

problems  turning into crises  as

L J L )
Y Y | Y J

outside context words center word outside context words
in window of size 2 at positiont in window of size 2

41




Word2vec: More details

Why two vectors? = Easier optimization. Average both at the end.

Two model variants:
1. Skip-grams (SG)
Predict context (“outside”) words (position independent) given center word

2. Continuous Bag of Words (CBOW)

Predict center word from (bag of) context words
This lecture so far: Skip-gram model

Additional efficiency in training:
1. Negative sampling

So far: Focus on naive softmax (simpler but more expensive training method)

42




