Natural Language Processing
with Deep Learning

CS224N/Ling284

P

Christopher Manning

Lecture 6: Simple and LSTM Recurrent Neural Networks

Lecture Plan

s w e

RNN Language Models, continued (20 mins)

Other uses of RNNs (10 mins)

Exploding and vanishing gradients (15 mins) %
LSTMs (20 mins)

Bidirectional and multi-layer RNNs (15 mins)

Final Projects
e Next Thursday: a lecture about choosing final projects
* |t's fine to delay thinking about projects until next week

e But if you're already thinking about projects, you can view some info/inspiration on
the website. It’s still last year’s information at present!

* |t's great if you can line up your own mentor; we also lining up some mentors

Overview

Last lecture we learned:
e Language models, n-gram language models, and Recurrent Neural Networks (RNNs)

Today we’ll learn how to get RNNs to work for you
e Training and generating from RNNs
e Uses of RNNs
e Problems with RNNs (exploding and vanishing gradients) and how to fix them
e These problems motivate a more sophisticated RNN architecture: LSTMs
e And other more complex RNN options: bidirectional RNNs and multi-layer RNNs

Next lecture we’ll learn:

e How we can do Neural Machine Translation (NMT) using an RNN-based architecture
called sequence-to-sequence with attention (which is Ass 41)

9@ = P(2® |the students opened their)

1. The Simple RNN Language Model books

laptops
output distribution
4 = softmax (Uh“) + bg) e RV : :
U
h©)__ h() h(2 h(3) h®)
hidden states ® ® @ @ @
Bt _ o (Whh(t—l) L We® b1> o W, Ry e W, | ® Wy, | ® Wy, | ®
() L () () ()
h(9) is the initial hidden state @ @ (] ("])
— 7 5 5 5
il B e We We We
. © O O O
word embeddings o) o 2| @ e Ne) e ©
e®) — pp® o @) @) O
@) @) @) @)
T T T T
words / one-hot vectors the students opened their
fB(t) - R|V| m(l) w(Z) w(3) m(4)

Note: this input sequence could be much /

4 longer now!

Training the parameters of RNNs: Backpropagation for RNNs

o.J ()
oWy, |4

Question: How do we calculate this? \Cﬁ

Answer: Backpropagate over timesteps

i=t,...,0, summing gradients as you go. a=2z+Y
This algorithm is called “backpropagation b=max(y,z) Of _0f0a + of ob
through time” [Werbos, P.G., 1988, Neural f=ab Oy Oady 0b0y

5 Networks 1, and others]

Generating text with a RNN Language Model

Just like a n-gram Language Model, you can use an RNN Language Model to
generate text by repeated sampling. Sampled output becomes next step’s input.

favorite season Is spring
N N N
sample sample sample sample
g(l) g(2) g(3) @(4)
N N N
U U U U
h©)__ h h(2) h(3) h4)
@ @ @ @ @
oW, |0 W, (@ W. || Wr |@| W, _
@ 1@ 1@ 1@ 1@ -
@ _‘d @ @ @
) — ﬂ\ \ /\ J h/\—! \ /\ J
‘A/ve We We We
: r:1 r—.—\ r:1
1 (2) 3) © (4)
Vol <o “leo| o
O (@) O @)
Te 5 To o
my favorite season is spring

Generating text with an RNN Language Model

Let’s have some fun!
 You can train an RNN-LM on any kind of text, then generate text in that style.

e RNN-LM trained on Obama speeches:

The United States will step up to the cost of a new challenges of the American
people that will share the fact that we created the problem. They were attacked
and so that they have to say that all the task of the final days of war that I will not
be able to get this done.

Source: https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2eal

https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0

Generating text with an RNN Language Model

Let’s have some fun!
 You can train an RNN-LM on any kind of text, then generate text in that style.
e RNN-LM trained on Harry Potter:

“Sorry,” Harry shouted, panicking—*“TI'll leave those brooms in London, are

they?”

“No idea,” said Nearly Headless Nick, casting low close by Cedric, carrying the
last bit of treacle Charms, from Harry’s shoulder, and to answer him the
common room perched upon it, four arms held a shining knob from when the

spider hadn’t felt it seemed. He reached the teams too.

Source: https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-82a9431803da6

https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6

Generating text with an RNN Language Model

Let’s have some fun!
 You can train an RNN-LM on any kind of text, then generate text in that style.
e RNN-LM trained on recipes:

Title: CHOCOLATE RANCH BARBECUE
Categories: Game, Casseroles, Cookies, Cookies

Yield: 6 Servings

2 tb Parmesan cheese —- chopped
1 ¢ Coconut milk
3 Eggs, beaten

Place each pasta over layers of lumps. Shape mixture into the moderate oven and simmer
until firm. Serve hot in bodied fresh, mustard, orange and cheese.

Combine the cheese and salt together the dough in a large skillet; add the ingredients
and stir in the chocolate and pepper.

Source: https://gist.github.com/nylki/lefbaa36635956d35bcc

https://gist.github.com/nylki/1efbaa36635956d35bcc

Generating text with a RNN Language Model

Let’s have some fun!
e You can train a RNN-LM on any kind of text, then generate text in that style.
e RNN-LM trained on paint color names:

_ Ghasty Pink 231 137 165 | ' Sand Dan 201 172 143

B Power Gray 151 124 112 - Grade Bat 48 94 83
'Navel Tan 199 173 140 " | Light Of Blast 175 150 147

Bock Coe White 221 215 236 I Grass Bat 176 99 108
‘ Horble Gray 178 181 196 Sindis Poop 204 205 194
I Homestar Brown 133 104 85 Dope 219 209 179
I snader Brown 144 106 74 B Testing 156 101 106
Golder Craam 237 217 177 " Stoner Blue 152 165 159
Hurky White 232 223 215 Burble Simp 226 181 132
Burf Pink 223 173 179 " Stanky Bean 197 162 171

Rose Hork 230 215 198

" | Turdly 190 164 116

This is an example of a character-level RNN-LM (predicts what character comes next)

Source: http://aiweirdness.com/post/160776374467/new-paint-colors-invented-by-neural-network

10

http://aiweirdness.com/post/160776374467/new-paint-colors-invented-by-neural-network

Evaluating Language Models

e The standard evaluation metric for Language Models is perplexity.

T 1/T
. 1
Slsh H (PLM(:c(t+1)| xt) ... ,w(l))) " Normalized by

t=1 number of words

_ J
Y

Inverse probability of corpus, according to Language Model

e Thisis equal to the exponential of the cross-entropy loss J(6):

T 1/T 1 T
H (~ (t)) = ©xXp (T Z — log yi(ﬂtt)+1> — eXp(J(9>)

t=1 yiBt+1 t=1

Lower perplexity is better!

11

RNNs have greatly improved perplexity

Model Perplexity

n-gram model — | Interpolated Kneser-Ney 5-gram (Chelba et al., 2013) 67.6
RNN-1024 + MaxEnt 9-gram (Chelba et al., 2013)) L

RNN-2048 + BlackOut sampling (Ji et al., 2015) 68.3

Increasingly Sparse Non-negative Matrix factorization (Shazeer et 52 9

complex RNNs Al 2015) .

LSTM-2048 (Jozefowicz et al., 2016) 43.7

2-layer LSTM-8192 (Jozefowicz et al., 2016) 30

Ours small (LSTM-2048) 43.9

| | Ours large (2-layer LSTM-2048) 39.8 !

Perplexity improves
(lower is better)

Source: https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words/

12

https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words/

Recap

e Language Model: A system that predicts the next word

e Recurrent Neural Network: A family of neural networks that:
e Take sequential input of any length
* Apply the same weights on each step

e Can optionally produce output on each step

e Recurrent Neural Network # Language Model

e We’'ve shown that RNNs are a great way to build a LM

e But RNNs are useful for much more!

13

Terminology and a look forward

The RNN we’ve seen so far = simple/vanilla/Elman RNN

Later today: You will learn about other RNN flavors

& £5i
T 3 i

" and multi-layer RNNs

us: G
=,
> il

10 L AT AR
w7 S G P
1y %

like GRU =%

By the end of the course: You will understand phrases like
“stacked bidirectional LSTM with residual connections and self-attention”

N

14

2. Other RNN uses: RNNs can be used for sequence tagging
e.g., part-of-speech tagging, named entity recognition

DT J

—

NN VBN

i1
i

the startled cat knocked over

N

)
=
=
=

\ 4
\ 4

Vv
A4

.
%

—>[Qovoc]—>
—>[Qovoc]—>

T
sy

~
>
®
<
Q
n
M

RNNs can be used for sentence classification
e.g., sentiment classification

I 16

©
O
»
=

Sentence

I

encoding

How to compute
sentence encoding?

—(e0000]

overall

\ 4
A4
Vv

—(e0000]

@ ‘@
@ @
@ @
@ @

/ the

enjoyed

\ 4
\ 4
\ 4

RNNs can be used for sentence classification
e.g., sentiment classification

positive How to compute

i sentence encoding?

' °
Sentence : Basic way:
encoding) Use final hidden

state
e
QUa/S

\ 4

—|0000]

\ 4

\ 4

\ 4

\ 4

—|e000]

A4

:

ot

—|e000]

! !

—

enjoyed the movie

overall
I 17

RNNs can be used for sentence classification
e.g., sentiment classification

positive How to compute
i sentence encoding?
o Usually bett
O sually better:
Sentence o - |
encoding %) ake element-wise

max or mean of all
hidden states

\ 4
\ 4

\ 4

\ 4

\ 4

—/e00@

\ 2

—/o00@

T

enjoyed the movie

overall
I 18

RNNs can be used as a language encoder module
e.g., question answering, machine translation, many other tasks!

Answer: German
Here the RNN acts as an A
: N T
encoder for the Question (the e ‘-‘..?»o;“o,o
i K O RN
hidden states represent the \0&60@’@?’” s..?"% %/
Question). The encoder is part e %0
of a larger neural system. Context: Ludwig
van Beethoven was
a German
composer and
pianist. A crucial
figure ...

Vv

\ 4

——| 0000

Vv

—(o000|

A4

—/e00®

—e00®

!

Question: what nationality was Beethoven

19

RNN-LMs can be used to generate text
e.g., speech recognition, machine translation, summarization

RNN-LM
AL
' \
what’s the weather

Input (audio)

T 1T
i

<START> what’s the

conditioning

\ 4

\ 4

s
:

This is an example of a conditional language model.
We'll see Machine Translation in much more detail next class.

20

3. Problems with RNNs: Vanishing and Exploding Gradients

J®)(6)

N

R h(2) h(3) h4)
O O O O
0 W | @ W | @ W | @
O @ @ @
O O O O

Vanishing gradient intuition

J(4)(9)
N
0 O O O
0 W @ |44 @ |44 _ '
O @ @ .
O O O O
3‘](4)

22

Vanishing gradient intuition

J4) (6)
N
htD h(? h(3) h(4)
® w__|e w___le 14 T
] - () > ® >
) ()) ®

8J@ Oh(9J@)
oD ~ R " 9R®

chain rule!

23

Vanishing gradient intuition

J)(9)
N
h(1) h() h(3) h(4)
@ @ @ @
O w e w e W '
@ | @ 1@ 5
@ @ @ @
oJ @ Oh?) OhB®) 9JW
oD~ oRM Oh® " Ohe)
chain rule!

24

25

Vanishing gradient intuition

J)(9)

N

h(1) h() h(3) h(4)

@ @ @ @

e w |e w e W e

@ | @ 1@ 1@

@ @ @ @
0JW on® § Oh®) oh® §J®
oh(t) — 9h() oh® h3 " oh@

chain rule!

Vanishing gradient intuition

J(4)(9)
N
O O O O
O W ___|e W ___|e W _ @
O O O e
O O O O
oJW oh(? Ih(3 5J®
orhD — |op® SR oh®

Vanishing gradient problem:
When these are small, the gradient
signal gets smaller and smaller as it

What happens if these are small?
backpropagates further

26

Vanishing gradient proof sketch (linear case)

27

R = o (Whh(t_l) +W,a® + bl)

Recall:
What if ¢ were the identity function, o(z) =z ?
oh®) . _ .
SR — diag (0' (Whh(t D4 w,z® + b1)) Wi, (chain rule)
=1 W,=W,

Consider the gradient of the loss JD(0) on step?, with respect
to the hidden state h(9) on some previous stepj.let { =4 — j
oJD (@) 9JD(h H Oh®)

OnGU) h(z) Oht—1) (chain rule)
71<t<Li
_90J9(9) IT wi= (>Wf; (value of ;LZ 5)

Oh() j<t<i Oh(9) T

If W, is “small”, then this term gets
exponentially problematic as £ becomes large

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanul3.pdf
(and supplemental materials), at http://proceedings.mlr.press/v28/pascanul3-supp.pdf

http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13-supp.pdf

Vanishing gradient proof sketch (linear case)

sufficient but
What’s wrong with w# ? notnecessary
[|
e Consider if the eigenvalues of W, are all less than 1:
)‘17)\27"-7)\71 <1
d1,42,---,49, (eigenvectors)

(i) , _ _
8gh(f)9) wt using the eigenvectors of W,, as a basis:

e We can write

0J (6 n
Bh(f)) sz — z; C qui ~ 0 (for large /)

Approaches 0 as £ grows, so gradient vanishes

What about nonlinear activations o (i.e., what we use?)
e Pretty much the same thing, except the proof requires A\; < vy
for some v dependent on dimensionality and o

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanul3.pdf
(and supplemental materials), at http://proceedings.mlr.press/v28/pascanul3-supp.pdf

28

http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13-supp.pdf

Why is vanishing gradient a problem?

J2) () J®(6)
N A
h(1) h(2) h(3) h4)
@ @ @ @
ol . W O W __|e W ___|®
@ @ @ 1@
@ @ @ @

Gradient signal from far away is lost because it’s much smaller than gradient signal from close-by.

So, model weights are updated only with respect to near effects, not long-term effects.

29

Effect of vanishing gradient on RNN-LM

e LM task: When she tried to print her tickets, she found that the printer was out of toner.
She went to the stationery store to buy more toner. It was very overpriced. After
installing the toner into the printer, she finally printed her

e To learn from this training example, the RNN-LM needs to model the dependency
between “tickets” on the 7t step and the target word “tickets” at the end.

e But if the gradient is small, the model can’t learn this dependency
e So, the model is unable to predict similar long-distance dependencies at test time

30

Why is exploding gradient a problem?

e |f the gradient becomes too big, then the SGD update step becomes too big:

learning rate
,_L\
grew — Hold . CVVQJ(@)

gradient

e This can cause bad updates: we take too large a step and reach a weird and bad
parameter configuration (with large loss)

* You think you’ve found a hill to climb, but suddenly you’re in lowa

* |Inthe worst case, this will result in Inf or NaN in your network
(then you have to restart training from an earlier checkpoint)

I 31

Gradient clipping: solution for exploding gradient

e Gradient clipping: if the norm of the gradient is greater than some threshold, scale it
down before applying SGD update

Algorithm 1 Pseudo-code for norm clipping
g+ 5
if ||g|| > threshold then

~ , threshold a
& el &

end if

e |ntuition: take a step in the same direction, but a smaller step

e |n practice, remembering to clip gradients is important, but exploding gradients are an
easy problem to solve

32 Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanul3.pdf

http://proceedings.mlr.press/v28/pascanu13.pdf

How to fix the vanishing gradient problem?

e The main problem is that it’s too difficult for the RNN to learn to preserve information
over many timesteps.

* |navanilla RNN, the hidden state is constantly being rewritten

) =g (Whh(t_l) + Woa® b)

e How about an RNN with separate memory which is added to?

33

4. Long Short-Term Memory RNNs (LSTMs)

34

A type of RNN proposed by Hochreiter and Schmidhuber in 1997 as a solution to the vanishing gradients
problem.

e Everyone cites that paper but really a crucial part of the modern LSTM is from Gers et al. (2000) @

On step t, there is a hidden state h" and a cell state ¢®
e Both are vectors length n
e The cell stores long-term information
e The LSTM can read, erase, and write information from the cell

e The cell becomes conceptually rather like RAM in a computer

The selection of which information is erased/written/read is controlled by three corresponding gates
e The gates are also vectors of length n
* On each timestep, each element of the gates can be open (1), closed (0), or somewhere in-between
e The gates are dynamic: their value is computed based on the current context

“Long short-term memory”, Hochreiter and Schmidhuber, 1997. https://www.bioinf.jku.at/publications/older/2604.pdf
“Learning to Forget: Continual Prediction with LSTM”, Gers, Schmidhuber, and Cummins, 2000. https://dl.acm.org/doi/10.1162/089976600300015015

https://www.bioinf.jku.at/publications/older/2604.pdf
https://dl.acm.org/doi/10.1162/089976600300015015

Long Short-Term Memory (LSTM)

We have a sequence of inputs x(), and we will compute a sequence of hidden states h(®) and cell states
c®. On timestep t:

Sigmoid function: all gate

Forget gate: controls what is kept vs values are between 0 and 1
forgotten, from previous cell state \ —
t) _ t—1 t)

Input gate: controls what parts of the -f(=9 (th() + Ufw(+ bf) <
new cell content are written to cell \ q %D

’L(t) =|0 (th(t_) + UZCB(t) + bz) 5
Output gate: controls what parts of g
cell are output to hidden state ~ ot) =|g (Woh(t_l) + Uom(t) + bo) ©

©

New cell content: this is the new > %
content to be written to the cell 9
Cell state: erase (“forget”) some ~ (%) (t—1) () o
content from last cell state, and write ¢’ = tanh (Wch +Ucx' + bC) é
(“input”) some new cell content c(t) _ f(t) 5 c(t_l) n i(t) . é(t) =
Hidden state: read (“output”’)some |, () — 5(®) 5 tapnh c® I »
content from the cell \

Gates are applied using element-wise
35 (or Hadamard) product: (O

Long Short-Term Memory (LSTM)

You can think of the LSTM equations visually like this:

& W, ®

] ‘]
4 N\) a)
>——o——— >
A Leisll | A
\4 J_>)>\ /_>

2 ® &)

O—>>->-<

Neural Network Pointwise Vector

Layer Operation Transfer Concatenate SORY

36 Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short-Term Memory (LSTM)

You can think of the LSTM equations visually like this:

Write some new cell content @ . .
The + sign is the secret!

Forget some \ %

cell content [——u |
P Ct

—— | Output some cell content

Compute the to the hidden state

forget gate

—

Compute the @ Compute the Compute the
input gate new cell content output gate

O—>>->-<

Neural Network Pointwise Vector

Layer Operation Transfer Concatenate SORY

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

37

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Gated Recurrent Units (GRU)

38

e Proposed by Cho et al. in 2014 as a simpler alternative to the LSTM.
e On each timestep t we have input ¥ and hidden state R (no cell state).

Update gate: controls what parts of

hidden state are updated vs preserved

Reset gate: controls what parts of

previous hidden state are used to
compute new content

\u(t) _ (Wu D 4 U, z® bu)

——) = ¢ (W,,,h(t‘l) + U, z® + br)

New hidden state content: reset gate

selects useful parts of prev hidden
state. Use this and current input to
compute new hidden content.

/vil(t) = tanh (Wh(’f‘(t) o h(t_l)) + th(t) + bh)
Rt — (1 _ u(t)) o h(t=1) I u® o B®

Hidden state: update gate

simultaneously controls what is kept
from previous hidden state, and what
is updated to new hidden state content

How does this solve vanishing gradient?
Like LSTM, GRU makes it easier to retain info
long-term (e.g., by setting update gate to 0)

"Learning Phrase Representations using RNN Encoder—Decoder for Statistical Machine Translation", Cho et al. 2014, https://arxiv.org/pdf/1406.1078v3.pdf

https://arxiv.org/pdf/1406.1078v3.pdf

LSTM vs GRU

e Researchers have proposed many gated RNN variants, but LSTM and GRU are the most
widely-used

e Rule of thumb: LSTM is a good default choice (especially if your data has particularly
long dependencies, or you have lots of training data); Switch to GRUs for speed and
fewer parameters.

e Note: LSTMs can store unboundedly* large values in memory cell dimensions, and
relatively easily learn to count. (Unlike GRUs.)

1000 4 & 100
\ GRU :
LSTM =
) / ‘
: : : 600 / ??? /‘;’z‘:_
Single dimension | bl
used as counter |, | s |
-0.75 N .
01 pA 1004 ——

0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000

() a”b"-LSTM on 100051000 (c) a™b™-GRU on 00051000

*bounded if assuming finite precision, but still, large
Source: “On the Practical Computational Power of Finite Precision RNNs for Language Recognition”, Weiss et al., 2018. https://arxiv.org/pdf/1805.04908.pdf

39

https://arxiv.org/pdf/1805.04908.pdf

How does LSTM solve vanishing gradients?

e The LSTM architecture makes it easier for the RNN to
preserve information over many timesteps

e e.g., if the forget gate is set to 1 for a cell dimension and the input

gate set to O, then the information of that cell is preserved
indefinitely.

* In contrast, it’s harder for a vanilla RNN to learn a recurrent
weight matrix W, that preserves info in the hidden state

* |n practice, you get about 100 timesteps rather than about 7

e LSTM doesn’t guarantee that there is no vanishing/exploding
gradient, but it does provide an easier way for the model to learn
long-distance dependencies

40

LSTMs: real-world success

e |n2013-2015, LSTMs started achieving state-of-the-art results

e Successful tasks include handwriting recognition, speech recognition, machine
translation, parsing, and image captioning, as well as language models

e [STMs became the dominant approach for most NLP tasks

e Now (2015-2022), other approaches (e.g., Transformers) have become dominant for
many tasks

e For example, in WMT (a Machine Translation conference + competition):
* In WMT 2014, there were 0 neural machine translation systems (!)

e In WMT 2016, the summary report contains “RNN” 44 times (and these systems won)
° In WMT 2019: “RNN” 7 times, "Transformer” 105 times

Source: "Findings of the 2016 Conference on Machine Translation (WMT16)", Bojar et al. 2016, http://www.statmt.org/wmt16/pdf/W16-2301.pdf
Source: "Findings of the 2018 Conference on Machine Translation (WMT18)", Bojar et al. 2018, http://www.statmt.org/wmt18/pdf/WMT028.pdf
Source: "Findings of the 2019 Conference on Machine Translation (WMT19)", Barrault et al. 2019, http://www.statmt.org/wmt18/pdf/WMT028.pdf

41

http://www.statmt.org/wmt16/pdf/W16-2301.pdf
http://www.statmt.org/wmt18/pdf/WMT028.pdf
http://www.statmt.org/wmt18/pdf/WMT028.pdf

Is vanishing/exploding gradient just a RNN problem?

e Nol! It can be a problem for all neural architectures (including feed-forward and

convolutional), especially very deep ones.

* Due to chain rule / choice of nonlinearity function, gradient can become vanishingly small as it
backpropagates

e Thus, lower layers are learned very slowly (hard to train)
e Solution: lots of new deep feedforward/convolutional architectures add more direct
connections (thus allowing the gradient to flow)

For example: X |
A\ 4
e Residual connections aka “ResNet” weight layer
. . F(x relu
e Also known as skip-connections () Y X
weight layer . .
identity

e The identity connection
preserves information by default

e This makes deep networks much Figure 2. Residual learning: a building block.
easier to train

"Deep Residual Learning for Image Recognition", He et al, 2015. https://arxiv.org/pdf/1512.03385.pdf

42

https://arxiv.org/pdf/1512.03385.pdf

Is vanishing/exploding gradient just a RNN problem?

Other methods:
e Dense connections aka “DenseNet”
e Directly connect each layer to all future layers!

* Highway connections aka “HighwayNet”

* Similar to residual connections, but the identity
connection vs the transformation layer is
controlled by a dynamic gate

* Inspired by LSTMs, but applied to deep
feedforward/convolutional networks

~@®-

— H P x —l
Information /\)
Highway P,)T(& «1//
Figure 1: A 5-layer dense block with a growth rate of £ = 4. c
Each layer takes all preceding feature-maps as input. . o
Highway Circuit

e Conclusion: Though vanishing/exploding gradients are a general problem, RNNs are particularly unstable
due to the repeated multiplication by the same weight matrix [Bengio et al, 1994]

"Highway Networks", Srivastava et al, 2015. https://arxiv.org/pdf/1505.00387.pdf

"Densely Connected Convolutional Networks", Huang et al, 2017. https://arxiv.org/pdf/1608.06993.pdf

43 ”Learning Long-Term Dependencies with Gradient Descent is Difficult", Bengio et al. 1994, http://ai.dinfo.unifi.it/paoclo//ps/tnn-94-gradient.pdf

https://arxiv.org/pdf/1608.06993.pdf
https://arxiv.org/pdf/1505.00387.pdf
http://ai.dinfo.unifi.it/paolo/ps/tnn-94-gradient.pdf

5. Bidirectional and Multi-layer RNNs: motivation

Task: Sentiment Classification

L. We can regard this hidden state as a
pOS! ive representation of the word “terribly” in the
context of this sentence. We call this a
contextual representation.

7 =P

Sentence
encoding

These contextual
representations only
contain information
about the /eft context
(e.g. “the movie was”).

~
v

What about right
context?

In this example,
“exciting” is in the right
context and this
modifies the meaning of
“terribly” (from negative
to positive)

the movie was terribly exciting

44

This contextual representation of “terribly”

BidireCtiQnaI RN NS has both left and right context!
_/
B) B B B B
o o @) @) @) o
o @) @) @) @) @)
Concatenated @) @) o O @) @)
hidden states @ @ () O O @)
o o @ o @ o
@ o @ e @ o
o o o o @ o
N
@) @) @) @) @) @)
Backward RNN o o o o o o
@) @) @) @) @) @)
ANEEYSNEERAED
| @ N - N N
Forward RNN ® l @ l @ o ®
ﬁ/ o/ (&) o ﬁ/

the movie was terribly exciting !
45

Bidirectional RNNs

This is a general notation to mean
“compute one forward step of the
RNN” — it could be a simple, LSTM, or
other (e.g., GRU) RNN computation.

On timestep t:

Forward RNN o () — RNNpw (ﬁ(t_l),) } Generally, these

two RNNs have
Backward RNN () — RNNBW(z(t“), ()

separate weights
Concatenated hidden states | B (1) |= [h/(t); h (t)]

\

We regard this as “the hidden
state” of a bidirectional RNN.
This is what we pass on to the
s next parts of the network.

Bidirectional RNNs: simplified diagram

N
A4

—(e0000]

A4

A4

——(e00@]

N
A4
N
V

——|e000]

T 11

the movie was terribly exciting

!

The two-way arrows indicate bidirectionality and
the depicted hidden states are assumed to be the
concatenated forwards+backwards states

Bidirectional RNNs

 Note: bidirectional RNNs are only applicable if you have access to the entire input
seguence

* They are not applicable to Language Modeling, because in LM you only have left
context available.

e If you do have entire input sequence (e.g., any kind of encoding), bidirectionality is
powerful (you should use it by default).

e For example, BERT (Bidirectional Encoder Representations from Transformers) is a
powerful pretrained contextual representation system built on bidirectionality.

* You will learn more about transformers, including BERT, in a couple of weeks!

48

Multi-layer RNNs

e RNNs are already “deep” on one dimension (they unroll over many timesteps)

* We can also make them “deep” in another dimension by
applying multiple RNNs — this is a multi-layer RNN.

e This allows the network to compute more complex representations

e The lower RNNs should compute lower-level features and the higher RNNs should
compute higher-level features.

e Multi-layer RNNs are also called stacked RNNs.

49

Multi-layer RNNs The hidden states from RNN layer i
are the inputs to RNN layer j+1

S S)) M))
@ () @ @ @ @
@ @ ()
RNN layer 3 ® | @ | @ > > >
Y O |l ® ‘| @ | @ |l @ | @
@ () @ @ @ @
|) S—) S ——/) S) S
N N N N N N
))))))
@ () @ @ @ @
@ @ @ @
RNN layer 2 ® >: >‘ >l @ >‘ >:
@ () @ @ @ @
\~—) S—) S— ——/) S) S—
N N N N N N
)))) S ‘S
@ () @ @ @
RNN layer 1 : >: >: >: >: >
@ () @ @ ()

~
>
M

movie was terribly exciting
50

Multi-layer RNNs in practice

e High-performing RNNs are usually multi-layer (but aren’t as deep as convolutional or
feed-forward networks)

e For example: In a 2017 paper, Britz et al. find that for Neural Machine Translation, 2 to
4 layers is best for the encoder RNN, and 4 layers is best for the decoder RNN

e Often 2 layers is a lot better than 1, and 3 might be a little better than 2

e Usually, skip-connections/dense-connections are needed to train deeper RNNs
(e.g., 8 layers)

e Transformer-based networks (e.g., BERT) are usually deeper, like 12 or 24 layers.
* You will learn about Transformers later; they have a lot of skipping-like connections

“Massive Exploration of Neural Machine Translation Architecutres”, Britz et al, 2017. https://arxiv.org/pdf/1703.03906.pdf

51

https://arxiv.org/pdf/1703.03906.pdf

In summary

Lots of new information today! What are some of the practical takeaways?

&) ® @)
f iy t
{ A 11 cA 3
© ® © :
1. LSTMs are powerful 2. Clip your gradients
A 3] G A A
o ® o S mtmEmEmEmE
L‘H LH LH LH S
the movie was terribly exciting ! I mT ;:T tjﬁy %tg %
3. Use bidirectionality 4. Multi-layer RNNs are more powerful, but

. when possible you might need skip connections if it’s deep

