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Lecture Plan

Today we will:
1. Introduce a new task: Machine Translation [15 mins], which is a major use-case of 
2. A new neural architecture: sequence-to-sequence [45 mins], which is improved by
3. A new neural technique: attention [20 mins]

• Announcements
• Please accept your Azure Lab Assignment (to get GPU)! Today!!! See Ed.
• Assignment 3 is due today – I hope your dependency parsers are parsing text!
• Assignment 4 out today – covered in this lecture, you get 9 days for it (!), due Thu
• Get started early! It’s bigger – and harder coding-wise – than the previous assignments 😰
• Starting with Ass 4, the TAs will no longer look at and debug your code for you!

• Thursday’s lecture is about choosing final projects
• In person office hours every day! (At the moment they’re less crowded than online!)
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Section 1: Pre-Neural Machine Translation
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Machine Translation

4

Machine Translation (MT) is the task of translating a sentence x from one language (the 
source language) to a sentence y in another language (the target language).

x: L'homme est né libre, et partout il est dans les fers

y: Man is born free, but everywhere he is in chains

– Rousseau



The early history of MT: 1950s

• Machine translation research began in the early 1950s on machines less 
powerful than high school calculators (before term “A.I.” coined!)

• Concurrent with foundational work on automata, formal languages, 
probabilities, and information theory

• MT heavily funded by military, but basically just simple rule-based 
systems doing word substitution 

• Human language is more complicated than that, and varies more across 
languages!

• Little understanding of natural language syntax, semantics, pragmatics
• Problem soon appeared intractable

1 minute video showing 1954 MT: 
https://youtu.be/K-HfpsHPmvw

https://youtu.be/K-HfpsHPmvw


The early history of MT: 1950s



1990s-2010s: Statistical Machine Translation

• Core idea: Learn a probabilistic model from data
• Suppose we’re translating French → English.
• We want to find best English sentence y, given French sentence x

• Use Bayes Rule to break this down into two components to be learned 
separately:

Translation Model

Models how words and phrases 
should be translated (fidelity). 

Learnt from parallel data.

Language Model 

Models how to write 
good English (fluency). 

Learnt from monolingual data.7



1990s-2010s: Statistical Machine Translation
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• Question: How to learn translation model                ?
• First, need large amount of parallel data 

(e.g., pairs of human-translated French/English sentences)

Ancient Egyptian

Demotic

Ancient Greek

The Rosetta Stone



Learning alignment for SMT

• Question: How to learn translation model                from the parallel corpus?

• Break it down further: Introduce latent a variable into the model:

where a is the alignment, i.e. word-level correspondence between source sentence x
and target sentence y

9



What is alignment?

Alignment is the correspondence between particular words in the translated sentence pair.

• Typological differences between languages lead to complicated alignments!
• Note: Some words have no counterpart

10 Examples from: “The Mathematics of Statistical Machine Translation: Parameter Estimation", Brown et al, 1993. http://www.aclweb.org/anthology/J93-2003

http://www.aclweb.org/anthology/J93-2003


Alignment is complex

Alignment can be many-to-one

11 Examples from: “The Mathematics of Statistical Machine Translation: Parameter Estimation", Brown et al, 1993. http://www.aclweb.org/anthology/J93-2003

http://www.aclweb.org/anthology/J93-2003


Alignment is complex

Alignment can be one-to-many

12 Examples from: “The Mathematics of Statistical Machine Translation: Parameter Estimation", Brown et al, 1993. http://www.aclweb.org/anthology/J93-2003

http://www.aclweb.org/anthology/J93-2003


Alignment is complex

Alignment can be many-to-many (phrase-level)

13 Examples from: “The Mathematics of Statistical Machine Translation: Parameter Estimation", Brown et al, 1993. http://www.aclweb.org/anthology/J93-2003

http://www.aclweb.org/anthology/J93-2003


Learning alignment for SMT

• We learn                    as a combination of several factors, including:
• Probability of particular words aligning (also depends on position in sent)
• Probability of particular words having a particular fertility (number of corresponding 

words)
• etc.

• Alignments a are latent variables: They aren’t explicitly specified in the data!
• Require the use of special learning algorithms (like Expectation-Maximization) for 

learning the parameters of distributions with latent variables
• In older days, we used to do a lot of that in CS 224N, but now see CS 228!
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Decoding for SMT

• We could enumerate every possible y and calculate the probability?  →  Too 
expensive!

• Answer: Impose strong independence assumptions in model, use dynamic 
programming for globally optimal solutions (e.g. Viterbi algorithm).

• This process is called decoding

Question:
How to compute 

this argmax?
Translation Model

Language Model 

15



Decoding for SMT Translation Options

he

er geht ja nicht nach hause

it
, it

, he

is
are

goes
go

yes
is

, of course

not
do not

does not
is not

after
to

according to
in

house
home

chamber
at home

not
is not

does not
do not

home
under house
return home

do not

it is
he will be

it goes
he goes

is
are

is after all
does

to
following
not after

not to

,

not
is not

are not
is not a

• Many translation options to choose from

– in Europarl phrase table: 2727 matching phrase pairs for this sentence
– by pruning to the top 20 per phrase, 202 translation options remain

Chapter 6: Decoding 8

Decoding: Find Best Path

er geht ja nicht nach hause

are

it

he
goes

does not

yes

go

to

home

home

backtrack from highest scoring complete hypothesis

Chapter 6: Decoding 15
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Source: ”Statistical Machine Translation", Chapter 6, Koehn, 2009. 
https://www.cambridge.org/core/books/statistical-machine-translation/94EADF9F680558E13BE759997553CDE5

https://www.cambridge.org/core/books/statistical-machine-translation/94EADF9F680558E13BE759997553CDE5


1990s-2010s: Statistical Machine Translation

• SMT was a huge research field
• The best systems were extremely complex

• Hundreds of important details we haven’t mentioned here
• Systems had many separately-designed subcomponents 

• Lots of feature engineering
• Need to design features to capture particular language phenomena

• Required compiling and maintaining extra resources
• Like tables of equivalent phrases

• Lots of human effort to maintain
• Repeated effort for each language pair!
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Section 2: Neural Machine Translation
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2014

(dramatic reenactment)
19



2014

MT research

NeuralMachineTranslation

(dramatic reenactment)
20



What is Neural Machine Translation?

21

• Neural Machine Translation (NMT) is a way to do Machine Translation with a single
end-to-end neural network

• The neural network architecture is called a sequence-to-sequence model (aka seq2seq) 
and it involves two RNNs



En
co

de
r R

N
N

Neural Machine Translation (NMT)

<START>

Source sentence (input)

il         a           m’   entarté

The sequence-to-sequence model
Target sentence (output)

Decoder RN
N

Encoder RNN produces 
an encoding of the 
source sentence.

Encoding of the source sentence.
Provides initial hidden state 

for Decoder RNN.

Decoder RNN is a Language Model that generates 
target sentence, conditioned on encoding.

he

ar
gm

ax

he

ar
gm

ax

hit

hit

ar
gm

ax

me

Note: This diagram shows test time behavior: decoder 
output is fed in          as next step’s input

with     a        pie    <END>

me       with    a       pie

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax
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Sequence-to-sequence is versatile!

• The general notion here is an encoder-decoder model
• One neural network takes input and produces a neural representation
• Another network produces output based on that neural representation
• If the input and output are sequences, we call it a seq2seq model

• Sequence-to-sequence is useful for more than just MT
• Many NLP tasks can be phrased as sequence-to-sequence:

• Summarization (long text → short text)
• Dialogue (previous utterances → next utterance)
• Parsing (input text → output parse as sequence)
• Code generation (natural language → Python code)

23



Neural Machine Translation (NMT)

• The sequence-to-sequence model is an example of a Conditional Language Model
• Language Model because the decoder is predicting the next word of the target sentence y
• Conditional because its predictions are also conditioned on the source sentence x

• NMT directly calculates            :

• Question: How to train an NMT system?
• (Easy) Answer: Get a big parallel corpus…
• But there is now exciting work on “unsupervised NMT”, data augmentation, etc.

Probability of next target word, given 
target words so far and source sentence x

24



Training a Neural Machine Translation system

En
co

de
r R

N
N

Source sentence (from corpus)

<START>    he        hit         me      with         a         pieil a         m’      entarté

Target sentence (from corpus)

Seq2seq is optimized as a single system. Backpropagation operates “end-to-end”.

Decoder RN
N

!𝑦! !𝑦" !𝑦# !𝑦$ !𝑦% !𝑦& !𝑦'

𝐽! 𝐽" 𝐽# 𝐽$ 𝐽% 𝐽& 𝐽'

= negative log 
prob of “he”

𝐽 =
1
𝑇
'
()!

*

𝐽( =                 +          +         +         +          +         +

= negative log 
prob of <END>

= negative log 
prob of “with”
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Multi-layer deep encoder-decoder machine translation net

Die       Proteste    waren am  Wochenende eskaliert <EOS>      The       protests    escalated    over          the     weekend
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The      protests  escalated    over         the      weekend   <EOS>

Encoder:
Builds up 
sentence 
meaning 

Source 
sentence

Translation 
generated

Feeding in 
last word

Decoder

Conditioning =
Bottleneck

[Sutskever et al. 2014; Luong et al. 2015] The hidden states from RNN layer i
are the inputs to RNN layer i+1
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Multi-layer RNNs in practice

• Multi-layer or stacked RNNs allow the network to compute more complex 
representations
• The lower RNNs should compute lower-level features and the higher RNNs should 

compute higher-level features. 
• High-performing RNNs are usually multi-layer (but aren’t as deep as convolutional or 

feed-forward networks)
• For example: In a 2017 paper, Britz et al. find that for Neural Machine Translation, 2 to 

4 layers is best for the encoder RNN, and 4 layers is best for the decoder RNN
• Often 2 layers is a lot better than 1, and 3 might be a little better than 2
• Usually, skip-connections/dense-connections are needed to train deeper RNNs

(e.g., 8 layers)
• Transformer-based networks (e.g., BERT) are usually deeper, like 12 or 24 layers.

• You will learn about Transformers later; they have a lot of skipping-like connections
27 “Massive Exploration of Neural Machine Translation Architecutres”, Britz et al, 2017. https://arxiv.org/pdf/1703.03906.pdf

https://arxiv.org/pdf/1703.03906.pdf


Greedy decoding

• We saw how to generate (or “decode”) the target sentence by taking argmax on each 
step of the decoder

• This is greedy decoding (take most probable word on each step)
• Problems with this method?

28

<START>

he

ar
gm

ax

he
ar

gm
ax

hit

hit

ar
gm

ax

me with      a       pie   <END>

me        with        a         pie

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax



Problems with greedy decoding

• Greedy decoding has no way to undo decisions! 
• Input: il a m’entarté (he hit me with a pie)

• → he ____
• → he hit ____
• → he hit a ____  (whoops! no going back now…)

• How to fix this?

29



Exhaustive search decoding

• Ideally, we want to find a (length T) translation y that maximizes 

• We could try computing all possible sequences y
• This means that on each step t of the decoder, we’re tracking Vt possible partial 

translations, where V is vocab size
• This O(VT) complexity is far too expensive!

30



Beam search decoding

• Core idea: On each step of decoder, keep track of the k most probable partial 
translations (which we call hypotheses)
• k is the beam size (in practice around 5 to 10, in NMT)

• A hypothesis                      has a score which is its log probability:

• Scores are all negative, and higher score is better
• We search for high-scoring hypotheses, tracking top k on each step

• Beam search is not guaranteed to find optimal solution
• But much more efficient than exhaustive search!

31



Beam search decoding: example
Beam size = k = 2. Blue numbers =

<START>

32

Calculate prob
dist of next word



Beam search decoding: example
Beam size = k = 2. Blue numbers =

<START>

he

I

33

-0.7

-0.9

Take top k words 
and compute scores

= log PLM(he|<START>)

= log PLM(I|<START>)



Beam search decoding: example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

<START>

he

I

34

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9

For each of the k hypotheses, find 
top k next words and calculate scores

= log PLM(hit|<START> he) + -0.7

= log PLM(struck|<START> he) + -0.7

= log PLM(was|<START> I) + -0.9

= log PLM(got|<START> I) + -0.9



Beam search decoding: example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

<START>

he

I

35

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9

Of these k2 hypotheses,
just keep k with highest scores



Beam search decoding: example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

<START>

he

I

36

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

For each of the k hypotheses, find 
top k next words and calculate scores

= log PLM(a|<START> he hit) + -1.7

= log PLM(me|<START> he hit) + -1.7

= log PLM(hit|<START> I was) + -1.6

= log PLM(struck|<START> I was) + -1.6



Beam search decoding: example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

<START>

he

I

37

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

Of these k2 hypotheses,
just keep k with highest scores



Beam search decoding: example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on<START>

he

I

38

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

-3.5

-3.3

-4.0

-3.4

For each of the k hypotheses, find 
top k next words and calculate scores



Beam search decoding: example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on<START>

he

I

39

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

-3.5

-3.3

-4.0

-3.4

Of these k2 hypotheses,
just keep k with highest scores



Beam search decoding: example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on

in

with

a

one<START>

he

I

40

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

-3.5

-3.3

-4.0

-3.4

-3.7

-4.3

-4.5

-4.8

For each of the k hypotheses, find 
top k next words and calculate scores



Beam search decoding: example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on

in

with

a

one<START>

he

I

41

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

-3.5

-3.3

-4.0

-3.4

-3.7

-4.3

-4.5

-4.8

Of these k2 hypotheses,
just keep k with highest scores



Beam search decoding: example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on

in

with

a

one

pie

tart

pie

tart

<START>

he

I

42

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

-3.5

-3.3

-4.0

-3.4

-3.7

-4.3

-4.5

-4.8

-4.3

-4.6

-5.0

-5.3

For each of the k hypotheses, find 
top k next words and calculate scores



Beam search decoding: example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on

in

with

a

one

pie

tart

pie

tart

<START>

he

I

43

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

-3.5

-3.3

-4.0

-3.4

-3.7

-4.3

-4.5

-4.8

-4.3

-4.6

-5.0

-5.3

This is the top-scoring hypothesis!



Beam search decoding: example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on

in

with

a

one

pie

tart

pie

tart

<START>

he

I

44

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

-3.5

-3.3

-4.0

-3.4

-3.7

-4.3

-4.5

-4.8

-4.3

-4.6

-5.0

-5.3

Backtrack to obtain the full hypothesis



Beam search decoding: stopping criterion

• In greedy decoding, usually we decode until the model produces an <END> token
• For example: <START> he hit me with a pie <END>

• In beam search decoding, different hypotheses may produce <END> tokens on 
different timesteps
• When a hypothesis produces <END>, that hypothesis is complete. 
• Place it aside and continue exploring other hypotheses via beam search.

• Usually we continue beam search until:
• We reach timestep T (where T is some pre-defined cutoff), or
• We have at least n completed hypotheses (where n is pre-defined cutoff)

45



Beam search decoding: finishing up

• We have our list of completed hypotheses. 
• How to select top one with highest score?

• Each hypothesis                     on our list has a score

• Problem with this: longer hypotheses have lower scores

• Fix: Normalize by length. Use this to select top one instead:

46



Advantages of NMT

Compared to SMT, NMT has many advantages:

• Better performance
• More fluent
• Better use of context
• Better use of phrase similarities

• A single neural network to be optimized end-to-end
• No subcomponents to be individually optimized

• Requires much less human engineering effort
• No feature engineering
• Same method for all language pairs

47



Disadvantages of NMT?

Compared to SMT:

• NMT is less interpretable 
• Hard to debug

• NMT is difficult to control
• For example, can’t easily specify rules or guidelines for translation
• Safety concerns!

48



How do we evaluate Machine Translation?

BLEU (Bilingual Evaluation Understudy)

• BLEU compares the machine-written translation to one or several human-written 
translation(s), and computes a similarity score based on:
• n-gram precision (usually for 1, 2, 3 and 4-grams)
• Plus a penalty for too-short system translations

• BLEU is useful but imperfect
• There are many valid ways to translate a sentence
• So a good translation can get a poor BLEU score because it has low n-gram overlap 

with the human translation L

49

You’ll see BLEU in detail 
in Assignment 4!

Source: ”BLEU: a Method for Automatic Evaluation of Machine Translation", Papineni et al, 2002. http://aclweb.org/anthology/P02-1040

http://aclweb.org/anthology/P02-1040
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MT progress over time

50
Sources: http://www.meta-net.eu/events/meta-forum-2016/slides/09_sennrich.pdf & http://matrix.statmt.org/

[Edinburgh En-De WMT newstest2013 Cased BLEU; NMT 2015 from U. Montréal; NMT 2019 FAIR on newstest2019]

http://www.meta-net.eu/events/meta-forum-2016/slides/09_sennrich.pdf


NMT: perhaps the biggest success story of NLP Deep Learning?

51

Neural Machine Translation went from a fringe research attempt in 2014 to the leading 
standard method in 2016

• 2014: First seq2seq paper published

• 2016: Google Translate switches from SMT to NMT – and by 2018 everyone has

• This is amazing!
• SMT systems, built by hundreds of engineers over many years, outperformed by 

NMT systems trained by a small group of engineers in a few months



So, is Machine Translation solved?

52

• Nope!
• Many difficulties remain:

• Out-of-vocabulary words
• Domain mismatch between train and test data
• Maintaining context over longer text
• Low-resource language pairs
• Failures to accurately capture sentence meaning
• Pronoun (or zero pronoun) resolution errors
• Morphological agreement errors

Further reading: “Has AI surpassed humans at translation? Not even close!” 
https://www.skynettoday.com/editorials/state_of_nmt

https://www.skynettoday.com/editorials/state_of_nmt


So is Machine Translation solved?

• Nope!
• Using common sense is still hard

?

53



So is Machine Translation solved?

• Nope!
• NMT picks up biases in training data

Source: https://hackernoon.com/bias-sexist-or-this-is-the-way-it-should-be-ce1f7c8c683c

Didn’t specify gender

54

https://hackernoon.com/bias-sexist-or-this-is-the-way-it-should-be-ce1f7c8c683c


So is Machine Translation solved?

• Nope!
• Uninterpretable systems do strange things
• (But I think this problem has been fixed in Google Translate by 2021.) 

Picture source: https://www.vice.com/en_uk/article/j5npeg/why-is-google-translate-spitting-out-sinister-religious-prophecies
Explanation: https://www.skynettoday.com/briefs/google-nmt-prophecies55

https://www.vice.com/en_uk/article/j5npeg/why-is-google-translate-spitting-out-sinister-religious-prophecies
https://www.skynettoday.com/briefs/google-nmt-prophecies


NMT research continues

NMT is a flagship task for NLP Deep Learning

• NMT research has pioneered many of the recent innovations of NLP Deep Learning

• NMT research continues to thrive
• Researchers have found many, many improvements to the “vanilla” seq2seq NMT 

system we’ve just presented

• But we’ll present next one improvement so integral that it is the new vanilla…

ATTENTION
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Assignment 4: Cherokee-English machine translation!

• Cherokee is an endangered Native American language – about 2000 fluent speakers
• Extremely low resource: About 20k parallel sentences available, most from the bible
• ᎪᎯᎩᏴ ᏥᎨᏒᎢ ᎦᎵᏉᎩ ᎢᏯᏂᎢ ᎠᏂᏧᏣ. ᏂᎪᎯᎸᎢ ᏗᎦᎳᏫᎢᏍᏗᎢ ᏩᏂᏯᎡᎢ 
ᏓᎾᏁᎶᎲᏍᎬᎢ ᏅᏯ ᎪᏢᏔᏅᎢ ᎦᏆᏗ ᎠᏂᏐᏆᎴᎵᏙᎲᎢ ᎠᎴ ᎤᏓᏍᏈᏗ ᎦᎾᏍᏗ ᎠᏅᏗᏍᎨᎢ 
ᎠᏅᏂᎲᎢ.
Long ago were seven boys who used to spend all their time down by the townhouse 
playing games, rolling a stone wheel along the ground, sliding and striking it with a stick

• Writing system is a syllabary of symbols for each CV unit (85 letters)
• Many thanks to Shiyue Zhang, Benjamin Frey, and Mohit Bansal

from UNC Chapel Hill for the resources for this assignment!

• Cherokee is not available on Google Translate! 😭
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Cherokee

• Cherokee originally lived in western North Carolina and eastern Tennessee
• Most speakers now in Oklahoma, following the Trail of Tears; some in NC 
• Writing system invented by Segwoya (often written Sequoyah) around 

1820 – someone who grew up illiterate
• Very effective: In the following decades Cherokee literacy was higher

than for white people in the southeastern United States

• https://www.cherokee.org
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Section 3: Attention
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Sequence-to-sequence: the bottleneck problem

En
co

de
r R

N
N

Source sentence (input)

<START>    he        hit        me       with        a         pieil a         m’      entarté

he        hit        me       with        a          pie    <END>

Decoder RN
N

Target sentence (output)

Problems with this architecture?

Encoding of the 
source sentence. 
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Sequence-to-sequence: the bottleneck problem

En
co

de
r R

N
N

Source sentence (input)

<START>    he        hit        me       with        a         pieil a         m’      entarté

he        hit        me       with        a          pie    <END>

Decoder RN
N

Target sentence (output)

Encoding of the 
source sentence. 

This needs to capture all 
information about the 

source sentence.
Information bottleneck!
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Attention

• Attention provides a solution to the bottleneck problem.

• Core idea: on each step of the decoder, use direct connection to the encoder to focus 
on a particular part of the source sequence

• First, we will show via diagram (no equations), then we will show with equations
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Sequence-to-sequence with attention

En
co

de
r 

RN
N

Source sentence (input)

<START>il a         m’      entarté

Decoder RN
N

At
te

nt
io

n 
sc

or
es
dot product
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Sequence-to-sequence with attention
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N

Source sentence (input)

<START>il a         m’      entarté

Decoder RN
N
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dot product
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Sequence-to-sequence with attention

En
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de
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RN
N

Source sentence (input)

<START>il a         m’      entarté

Decoder RN
N
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Sequence-to-sequence with attention

En
co

de
r 

RN
N

Source sentence (input)

<START>il a         m’      entarté

Decoder RN
N

At
te

nt
io

n 
sc

or
es
dot product
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Sequence-to-sequence with attention

En
co

de
r 

RN
N

Source sentence (input)

<START>il a         m’      entarté

Decoder RN
N

At
te

nt
io

n 
sc

or
es

On this decoder timestep, we’re 
mostly focusing on the first 
encoder hidden state (”he”)

At
te

nt
io

n 
di

st
rib

ut
io

n

Take softmax to turn the scores 
into a probability distribution
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Sequence-to-sequence with attention

En
co

de
r 

RN
N

Source sentence (input)

<START>il a         m’      entarté

Decoder RN
N

At
te

nt
io

n 
di

st
rib

ut
io

n
At

te
nt

io
n 

sc
or

es

Attention 
output

Use the attention distribution to take a 
weighted sum of the encoder hidden 
states.

The attention output mostly contains 
information from the hidden states that 
received high attention.
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Sequence-to-sequence with attention

En
co

de
r 

RN
N

Source sentence (input)

<START>il a         m’      entarté

Decoder RN
N

At
te

nt
io

n 
di

st
rib

ut
io

n
At

te
nt

io
n 

sc
or

es

Attention 
output

Concatenate attention output 
with decoder hidden state, then 
use to compute !𝑦! as before

!𝑦!

he

69



Sequence-to-sequence with attention

En
co

de
r 

RN
N

Source sentence (input)

<START>il a         m’      entarté

Decoder RN
N

At
te

nt
io

n 
sc

or
es

he

At
te

nt
io

n 
di

st
rib

ut
io

n

Attention 
output

!𝑦"

hit

70

Sometimes we take the 
attention output from the 
previous step, and also 
feed it into the decoder 
(along with the usual 
decoder input). We do 
this in Assignment 4.



Sequence-to-sequence with attention

En
co

de
r 

RN
N

Source sentence (input)

<START>il a         m’      entarté

Decoder RN
N

At
te

nt
io

n 
sc

or
es

At
te

nt
io

n 
di

st
rib

ut
io

n

Attention 
output

he hit

!𝑦#

me
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Sequence-to-sequence with attention
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de
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RN
N

Source sentence (input)

<START>il a         m’      entarté

Decoder RN
N

At
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nt
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Attention 
output

he hit me

!𝑦$

with
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Sequence-to-sequence with attention

En
co

de
r 

RN
N

Source sentence (input)

<START>il a         m’      entarté

Decoder RN
N

At
te

nt
io

n 
sc

or
es

At
te

nt
io

n 
di

st
rib

ut
io

n

Attention 
output

he hit with

!𝑦%

a

me
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Sequence-to-sequence with attention

En
co

de
r 

RN
N

Source sentence (input)

<START>il a         m’      entarté

Decoder RN
N

At
te

nt
io

n 
sc

or
es

At
te

nt
io

n 
di

st
rib

ut
io

n

Attention 
output

he hit me with a

!𝑦&

pie
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Attention: in equations

• We have encoder hidden states 
• On timestep t, we have decoder hidden state 
• We get the attention scores         for this step:

• We take softmax to get the attention distribution        for this step (this is a probability distribution and 
sums to 1)

• We use to take a weighted sum of the encoder hidden states to get the 
attention output 

• Finally we concatenate the attention output        with the decoder hidden 
state      and proceed as in the non-attention seq2seq model
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Attention is great!

• Attention significantly improves NMT performance
• It’s very useful to allow decoder to focus on certain parts of the source

• Attention provides more “human-like” model of the MT process
• You can look back at the source sentence while translating, rather than needing to remember it all

• Attention solves the bottleneck problem
• Attention allows decoder to look directly at source; bypass bottleneck

• Attention helps with the vanishing gradient problem
• Provides shortcut to faraway states

• Attention provides some interpretability
• By inspecting attention distribution, we see what the decoder was focusing on
• We get (soft) alignment for free!
• This is cool because we never explicitly trained an alignment system
• The network just learned alignment by itself
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There are several attention variants

• We have some values and a query

• Attention always involves:
1. Computing the attention scores  
2. Taking softmax to get attention distribution ⍺:

3. Using attention distribution to take weighted sum of values:

thus obtaining the attention output a (sometimes called the context vector)
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There are 
multiple ways 

to do this



Attention variants

There are several ways you can compute                from                                    and                :

Basic dot-product attention:
• Note: this assumes               . This is the version we saw earlier.

• Multiplicative attention:                                     [Luong. Pham, and Manning 2015]
• Where                       is a weight matrix. Perhaps better called “bilinear attention”

• Reduced-rank multiplicative attention: 𝑒! = 𝑠" 𝑼"𝑽 ℎ! = (𝑼𝑠)"(𝑽ℎ!)
• For low rank matrices 𝑼 ∈ ℝ#×%+, 𝑽 ∈ ℝ#×%,, 𝑘 ≪ 𝑑&, 𝑑'

• Additive attention: [Bahdanau, Cho, and Bengio 2014]
• Where                                                 are weight matrices and                is a weight vector. 
• d3 (the attention dimensionality) is a hyperparameter
• “Additive” is a weird/bad name. It’s really using a feed-forward neural net layer.
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More information: “Deep Learning for NLP Best Practices”, Ruder, 2017. http://ruder.io/deep-learning-nlp-best-practices/index.html#attention
“Massive Exploration of Neural Machine Translation Architectures”, Britz et al, 2017, https://arxiv.org/pdf/1703.03906.pdf

You’ll think about the relative 
advantages/disadvantages of these in Assignment 4!

http://ruder.io/deep-learning-nlp-best-practices/index.html
https://arxiv.org/pdf/1703.03906.pdf


Attention variants

There are several ways you can compute                from                                   
and                :

• Basic dot-product attention:
• Note: this assumes
• This is the version we saw earlier

• Multiplicative attention:
• Where                       is a weight matrix

• Additive attention:
• Where                                                 are weight matrices and

is a weight vector. 
• d3 (the attention dimensionality) is a hyperparameter
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Attention is a general Deep Learning technique

• We’ve seen that attention is a great way to improve the sequence-to-sequence model 
for Machine Translation.

• However: You can use attention in many architectures 
(not just seq2seq) and many tasks (not just MT)

• More general definition of attention:
• Given a set of vector values, and a vector query, attention is a technique to compute 

a weighted sum of the values, dependent on the query.

• We sometimes say that the query attends to the values.
• For example, in the seq2seq + attention model, each decoder hidden state (query) 

attends to all the encoder hidden states (values).
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Attention is a general Deep Learning technique

81

• More general definition of attention:
• Given a set of vector values, and a vector query, attention is a technique to compute 

a weighted sum of the values, dependent on the query.

Intuition:
• The weighted sum is a selective summary of the information contained in the values, 

where the query determines which values to focus on.
• Attention is a way to obtain a fixed-size representation of an arbitrary set of 

representations (the values), dependent on some other representation (the query).

Upshot:
• Attention has become the powerful, flexible, general way pointer and memory 

manipulation in all deep learning models. A new idea from after 2010! From NMT!



Summary of today’s lecture

• We learned some history of Machine Translation (MT)

• Since 2014, Neural MT rapidly 
replaced intricate Statistical MT

• Sequence-to-sequence is the 
architecture for NMT (uses 2 models: encoder and decoder)

• Attention is a way to focus on 
particular parts of the input
• Improves sequence-to-sequence a lot!
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