
Natural Language Processing
with Deep Learning

CS224N/Ling284

Anna Goldie

Lecture 9: Transformers

Slides coauthored with John Hewitt

Announcements

2

• CS224n 2022 Mid-Quarter Feedback Survey

• Your feedback is very helpful for us, so please fill it out
by next Tuesday 2/8.

• There have been some issues with Azure onboarding, so
we are granting the following extensions:

• Assignment 4 is now due on Feb 8!

• Assignment 5 is now due on Feb 17!

• Final project proposal are still due on Feb 8, so please
manage your time accordingly.

• Warning: For future assignments, we cannot guarantee
that we will not deduct points for not tagging properly.

• Apply for CURIS! Some NLP projects on offer:

• https://curis.stanford.edu/summer/ 新年快乐!

https://curis.stanford.edu/summer/

Lecture Plan

1. Impact of Transformers on NLP (and ML more broadly)

2. From Recurrence (RNNs) to Attention-Based NLP Models

3. Understanding the Transformer Model

4. Drawbacks and Variants of Transformers

3

Outline

1. Impact of Transformers on NLP (and ML more broadly)

2. From Recurrence (RNNs) to Attention-Based NLP Models

3. Understanding the Transformer Model

4. Drawbacks and Variants of Transformers

4

Transformers: Is Attention All We Need?

5

• Last week, we learned that attention dramatically improves the performance of
recurrent neural networks.

• Today, we will take this one step further and ask Is Attention All We Need?

Transformers: Is Attention All We Need?

6

• Last week, we learned that attention dramatically improves the performance of
recurrent neural networks.

• Today, we will take this one step further and ask Is Attention All We Need?

• Spoiler: Not Quite!

Transformers Have Revolutionized the Field of NLP

7

• By the end of this lecture, you will deeply understand the neural architecture that
underpins virtually every state-of-the-art NLP model today!

[Vaswani et al., 2017]

Add & Norm

Add & Norm

Add & Norm

Add & Norm

Feed Forward

Add & Norm

Masked Multi-
Head Attention

Multi-Head
Attention

Feed Forward

Multi-Head
Attention

Input
Embedding

Output
Embedding

Inputs Outputs
(shifted right)

++

Linear

Softmax

Output
Probabilities

Positional
Encoding

Positional
Encoding

Repeat 6x
(# of Layers)

Repeat 6x
(# of Layers)Encoder

Decoder

Great Results with Transformers: Machine Translation

[Vaswani et al., 2017]

Not just better Machine
Translation BLEU scores

Also more efficient to
train!

First, Machine Translation results from the original Transformers paper!

[Test sets: WMT 2014 English-German and English-French]8

Great Results with Transformers: Document Generation

[Liu et al., 2018]; WikiSum dataset

Transformers dominating across the board.

Next, document generation!
(For perplexity, lower is better; for ROUGE-L, higher is better.)

The old standard from last week!

9

https://arxiv.org/pdf/1801.10198.pdf

Preview: Great Results with (Pre-Trained) Transformers

[Liu et al., 2018]

Before too long, most Transformers results also incorporate pretraining, a method
we’ll go over on Thursday.

Transformers’ parallelizability allows for efficient pretraining, and have made them
the de-facto standard.

On this popular aggregate
benchmark, for example:

All top models are
Transformer (and
pretraining)-based.

More results Thursday when we discuss pretraining.
10

https://arxiv.org/pdf/1801.10198.pdf

Transformers Even Show Promise Outside of NLP

11

Transformers Even Show Promise Outside of NLP

12

Protein Folding

[Jumper et al. 2021] aka AlphaFold2!

https://www.nature.com/articles/s41586-021-03819-2

Transformers Even Show Promise Outside of NLP

13

Protein Folding

Image Classification
[Dosovitskiy et al. 2020]: Vision Transformer (ViT) outperforms
ResNet-based baselines with substantially less compute.

[Jumper et al. 2021] aka AlphaFold2!

https://www.nature.com/articles/s41586-021-03819-2

Transformers Even Show Promise Outside of NLP

14

Protein Folding

Image Classification
[Dosovitskiy et al. 2020]: Vision Transformer (ViT) outperforms
ResNet-based baselines with substantially less compute.

ML for Systems
[Zhou et al. 2020]: A Transformer-based
compiler model (GO-one) speeds up a
Transformer model!

[Jumper et al. 2021] aka AlphaFold2!

https://www.nature.com/articles/s41586-021-03819-2

Scaling Laws: Are Transformers All We Need?

15

• With Transformers, language modeling performance improves smoothly as we increase
model size, training data, and compute resources.

• This power-law relationship has been observed over multiple orders of magnitude with
no sign of slowing!

• If we keep scaling up these models (with no change to the architecture), could they
eventually match or exceed human-level performance?

[Kaplan et al., 2020]

https://arxiv.org/pdf/2001.08361.pdf

Outline

1. Impact of Transformers on NLP (and ML more broadly)

2. From Recurrence (RNNs) to Attention-Based NLP Models

3. Understanding the Transformer Model

4. Drawbacks and Variants of Transformers

16

As of last week: recurrent models for (most) NLP!

• Circa 2016, the de facto strategy in NLP is to
encode sentences with a bidirectional LSTM:
(for example, the source sentence in a translation)

17

• Define your output (parse, sentence,
summary) as a sequence, and use an LSTM to
generate it.

• Use attention to allow flexible access to
memory

Today: Same goals, different building blocks

• Last week, we learned about sequence-to-sequence problems and
encoder-decoder models.

• Today, we’re not trying to motivate entirely new ways of looking at
problems (like Machine Translation)

• Instead, we’re trying to find the best building blocks to plug into our
models and enable broad progress.

18

2014-2017ish
Recurrence

Lots of trial
and error

2021
??????

Issues with recurrent models: Linear interaction distance

• RNNs are unrolled “left-to-right”.

• It encodes linear locality: a useful heuristic!

• Nearby words often affect each other’s meanings

• Problem: RNNs take O(sequence length) steps for distant word
pairs to interact.

19

tasty pizza

The chef atewho …

O(sequence length)

Issues with recurrent models: Linear interaction distance

• O(sequence length) steps for distant word pairs to interact means:

• Hard to learn long-distance dependencies (because gradient problems!)

• Linear order of words is “baked in”; we already know sequential structure
doesn't tell the whole story...

20

The atechef who …

Info of chef has gone through
O(sequence length) many layers!

Issues with recurrent models: Lack of parallelizability

• Forward and backward passes have O(seq length) unparallelizable operations

• GPUs (and TPUs) can perform many independent computations at once!

• But future RNN hidden states can’t be computed in full before past RNN hidden
states have been computed

• Inhibits training on very large datasets!

• Particularly problematic as sequence length increases, as we can no longer batch
many examples together due to memory limitations

21

h1

0

1 T

hT

T-1

h2

1

2

2

3

Numbers indicate min # of steps before a state can be computed

If not recurrence, then what? How about (self) attention?

• To recap, attention treats each word’s representation as a query to
access and incorporate information from a set of values.

• Last week, we saw attention from the decoder to the encoder;

• Self-attention is encoder-encoder (or decoder-decoder) attention where
each word attends to each other word within the input (or output).

embedding 0 0 0 0 0 0 0 0

h1 h2 hT

2 2 2 2 2 2 2 2
attention

attention
1 1 1 1 1 1 1 1

All words attend
to all words in
previous layer;
most arrows here
are omitted

22

Computational Dependencies for Recurrence vs. Attention

23

RNN-Based Encoder-Decoder
Model with Attention

Transformer-Based
Encoder-Decoder Model

Computational Dependencies for Recurrence vs. Attention

24

Transformer Advantages:
• Number of unparallelizable operations does

not increase with sequence length.
• Each "word" interacts with each other, so

maximum interaction distance: O(1).

RNN-Based Encoder-Decoder
Model with Attention

Transformer-Based
Encoder-Decoder Model

Outline

1. Impact of Transformers on NLP (and ML more broadly)

2. From Recurrence (RNNs) to Attention-Based NLP Models

3. Understanding the Transformer Model

4. Drawbacks and Variants of Transformers

25

The Transformer Encoder-Decoder [Vaswani et al., 2017]

26

Add & Norm

Add & Norm

Add & Norm

Add & Norm

Feed Forward

Add & Norm

Masked Multi-
Head Attention

Multi-Head
Attention

Feed Forward

Multi-Head
Attention

Input
Embedding

Output
Embedding

Inputs Outputs
(shifted right)

++

Linear

Softmax

Output
Probabilities

Positional
Encoding

Positional
Encoding

Repeat 6x
(# of Layers)

Repeat 6x
(# of Layers)Encoder

Decoder

In this section, you will learn exactly how
the Transformer architecture works:
• First, we will talk about the Encoder!
• Next, we will go through the Decoder

(which is quite similar)!

Encoder: Self-Attention

27

Self-Attention

Input
Embedding

Output
Embedding

Inputs Outputs
(shifted right)

Output
Probabilities

Encoder

Decoder

Self-Attention is the core building block of
Transformer, so let's first focus on that!

Intuition for Attention Mechanism

28

 Let's think of attention as a "fuzzy" or approximate hashtable:

 To look up a value, we compare a query against keys in a table.

 In a hashtable (shown on the bottom left):
 Each query (hash) maps to exactly one key-value pair.

 In (self-)attention (shown on the bottom right):
 Each query matches each key to varying degrees.

 We return a sum of values weighted by the query-key match.

k0

k1

k2

k3

k4

k5

k6

k7

v1

v3

v2

v4

v6

v7

v5

v0

q

k0

k1

k2

k3

k4

k5

k6

k7

v1

v3

v2

v4

v6

v7

v5

v0

q

Recipe for Self-Attention in the Transformer Encoder

29

 Step 1: For each word , calculate its query, key, and value.

• Step 2: Calculate attention score between query and keys.

• Step 3: Take the softmax to normalize attention scores.

• Step 4: Take a weighted sum of values.

k0

k1

k2

k3

k4

k5

k6

k7

v1

v3

v2

v4

v6

v7

v5

v0

q

Recipe for (Vectorized) Self-Attention in the Transformer Encoder

30

 Step 1: With embeddings stacked in X, calculate queries, keys, and values.

• Step 2: Calculate attention scores between query and keys.

• Step 3: Take the softmax to normalize attention scores.

• Step 4: Take a weighted sum of values.

What We Have So Far: (Encoder) Self-Attention!

31

Self-Attention

Input
Embedding

Output
Embedding

Inputs Outputs
(shifted right)

Output
Probabilities

Encoder

Decoder

But attention isn't quite all you need!

32

• Problem: Since there are no element-wise non-linearities, self-
attention is simply performing a re-averaging of the value vectors.

• Easy fix: Apply a feedforward layer to the output of attention,
providing non-linear activation (and additional expressive power).

Feed Forward

Self-Attention

Input
Embedding

Output
Embedding

Inputs Outputs
(shifted right)

Encoder

Decoder

Output
Probabilities

Equation for Feed Forward Layer

But how do we make this work for deep networks?

33

Training Trick #1: Residual Connections
Training Trick #2: LayerNorm
Training Trick #3: Scaled Dot Product Attention

Feed Forward

Self-Attention

Input
Embedding

Output
Embedding

Inputs Outputs
(shifted right)

Encoder Decoder

Output
Probabilities

Repeat 6x
(# of Layers)

Repeat 6x
(# of Layers)

Training Trick #1: Residual Connections [He et al., 2016]

34

• Residual connections are a simple but powerful
technique from computer vision.

• Deep networks are surprisingly bad at
learning the identity function!

• Therefore, directly passing "raw" embeddings to
the next layer can actually be very helpful!

• This prevents the network from "forgetting" or
distorting important information as it is
processed by many layers.

Feed Forward

Self-Attention

Input
Embedding

Output
Embedding

Inputs Outputs
(shifted right)

Encoder

Decoder

Output
Probabilities

Repeat 6x
(# of Layers)

Repeat 6x
(# of Layers)

Add

Add

Residual connections are
also thought to smooth the
loss landscape and make
training easier!

Training Trick #2: Layer Normalization [Ba et al., 2016]

35

• Problem: Difficult to train the parameters of
a given layer because its input from the layer
beneath keeps shifting.

• Solution: Reduce uninformative variation by
normalizing to zero mean and standard
deviation of one within each layer. Feed Forward

Self-Attention

Input
Embedding

Output
Embedding

Inputs Outputs
(shifted right)

Encoder Decoder

Output
Probabilities

Repeat 6x
(# of Layers)

Repeat 6x
(# of Layers)

Add & Norm

Add & Norm

Mean: Standard Deviation:

Training Trick #3: Scaled Dot Product Attention

36

• After LayerNorm, the mean and variance of
vector elements is 0 and 1, respectively. (Yay!)

• However, the dot product still tends to take on
extreme values, as its variance scales with
dimensionality dk

Feed Forward

Scaled Attention

Input
Embedding

Output
Embedding

Inputs Outputs
(shifted right)

Encoder Decoder

Output
Probabilities

Repeat 6x
(# of Layers)

Repeat 6x
(# of Layers)

Add & Norm

Add & Norm

Quick Statistics Review:

• Mean of sum = sum of means =

• Variance of sum = sum of variances =

• To set the variance to 1, simply divide by !

Updated Self-Attention Equation:

Major issue!

37

• We're almost done with the
Encoder, but we have a
major problem! Has anyone
spotted it?

• Consider this sentence:

• "Man eats small dinosaur."

Transformer-Based
Encoder-Decoder Model

Man eats small dinosaur

Major issue!

38

• We're almost done with the
Encoder, but we have a
major problem! Has anyone
spotted it?

• Consider this sentence:

• "Man eats small dinosaur."

• Wait a minute, order doesn't
impact the network at all!

• This seems wrong given that
word order does have meaning
in many languages, including
English!

Transformer-Based
Encoder-Decoder Model

Man eats small dinosaur

Solution: Inject Order Information through Positional Encodings!

39

Feed Forward

Scaled Attention

Input
Embedding

Output
Embedding

Inputs Outputs
(shifted right)

Encoder

Output
Probabilities

Repeat 6x
(# of Layers)

Repeat 6x
(# of Layers)

Add & Norm

Add & Norm

+
Positional
Encoding

Decoder

Fixing the first self-attention problem: sequence order

• Since self-attention doesn’t build in order information, we need to encode the order of the
sentence in our keys, queries, and values.

• Consider representing each sequence index as a vector

𝑝𝑖 ∈ ℝ𝑑, for 𝑖 ∈ {1,2, … , 𝑇} are position vectors

• Don’t worry about what the 𝑝𝑖 are made of yet!

• Easy to incorporate this info into our self-attention block: just add the 𝑝𝑖 to our inputs!

• Let ෤𝑣𝑖 ෨𝑘𝑖 , ෤𝑞𝑖 be our old values, keys, and queries.

𝑣𝑖 = ෤𝑣𝑖 + 𝑝𝑖
𝑞𝑖 = ෤𝑞𝑖 + 𝑝𝑖
𝑘𝑖 = ෨𝑘𝑖 + 𝑝𝑖

In deep self-attention
networks, we do this at the
first layer! You could
concatenate them as well,
but people mostly just add…

40

• Sinusoidal position representations: concatenate sinusoidal functions of varying periods:

• Pros:

• Periodicity indicates that maybe “absolute position” isn’t as important

• Maybe can extrapolate to longer sequences as periods restart

• Cons:

• Not learnable; also the extrapolation doesn’t really work

Position representation vectors through sinusoids

cos(𝑖/100002∗1/𝑑)
𝑝𝑖 =

sin(𝑖/100002∗1/𝑑)

sin(𝑖/100002∗
𝑑
2
/𝑑)

cos(𝑖/100002∗
𝑑
2/𝑑)

Image: https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/

Index in the sequence

D
im

en
si

o
n

41

• Learned absolute position representations: Let all 𝑝𝑖 be learnable parameters!

Learn a matrix 𝑝 ∈ ℝ𝑑×𝑇, and let each 𝑝𝑖 be a column of that matrix!

• Pros:

• Flexibility: each position gets to be learned to fit the data

• Cons:

• Definitely can’t extrapolate to indices outside 1,… , 𝑇.

• Most systems use this!

• Sometimes people try more flexible representations of position:

• Relative linear position attention [Shaw et al., 2018]

• Dependency syntax-based position [Wang et al., 2019]

Position representation vectors learned from scratch

42

https://arxiv.org/abs/1803.02155
https://arxiv.org/pdf/1909.00383.pdf

Solution: Inject Order Information through Positional Encodings!

43

Feed Forward

Scaled Attention

Input
Embedding

Output
Embedding

Inputs Outputs
(shifted right)

Encoder

Output
Probabilities

Repeat 6x
(# of Layers)

Repeat 6x
(# of Layers)

Add & Norm

Add & Norm

+
Positional
Encoding

Decoder

Multi-Headed Self-Attention: k heads are better than 1!

44

• High-Level Idea: Let's perform self-attention multiple times in parallel and combine the results.

Wizards of the Coast, Artist: Todd Lockwood

[Vaswani et al. 2017]

The Transformer Encoder: Multi-headed Self-Attention

• What if we want to look in multiple places in the sentence
at once?

• For word 𝑖, self-attention “looks” where 𝑥𝑖
⊤𝑄⊤𝐾𝑥𝑗 is

high, but maybe we want to focus on different 𝑗 for
different reasons?

• We’ll define multiple attention “heads” through multiple
Q,K,V matrices

• Let, 𝑄ℓ, 𝐾ℓ, 𝑉ℓ ∈ ℝ𝑑×
𝑑

ℎ, where ℎ is the number of attention
heads, and ℓ ranges from 1 to ℎ.

• Each attention head performs attention independently:

• outputℓ = softmax 𝑋𝑄ℓ𝐾ℓ
⊤𝑋⊤ ∗ 𝑋𝑉ℓ, where

outputℓ ∈ ℝ𝑑/ℎ

• Then the outputs of all the heads are combined!

• output = 𝑌[output1; … ; outputℎ], where 𝑌 ∈ ℝ𝑑×𝑑

46

Credit to https://jalammar.github.io/illustrated-transformer/

Yay, we've completed the Encoder! Time for the Decoder...

47

Feed Forward

Multi-Head
Attention

Input
Embedding

Output
Embedding

Inputs Outputs
(shifted right)

Encoder Decoder

Output
Probabilities

Repeat 6x
(# of Layers)

Repeat 6x
(# of Layers)

Add & Norm

Add & Norm

+
Positional
Encoding

Decoder: Masked Multi-Head Self-Attention

48

• Problem: How do we keep the decoder
from cheating? If we have a language
modeling objective, can't the network
just look ahead and "see" the answer?

Transformer-Based
Encoder-Decoder Model

Decoder: Masked Multi-Head Self-Attention

49

• Problem: How do we keep the decoder
from "cheating"? If we have a language
modeling objective, can't the network
just look ahead and "see" the answer?

• Solution: Masked Multi-Head
Attention. At a high-level, we hide
(mask) information about future
tokens from the model.

Transformer-Based
Encoder-Decoder Model

Masking the future in self-attention

• To use self-attention in
decoders, we need to ensure
we can’t peek at the future.

• At every timestep, we could
change the set of keys and
queries to include only past
words. (Inefficient!)

• To enable parallelization, we
mask out attention to future
words by setting attention
scores to −∞.

The

chef

who

[START]

For encoding
these words

We can look at these
(not greyed out) words

𝑒𝑖𝑗 = ൝
𝑞𝑖
⊤𝑘𝑗 , 𝑗 < 𝑖

−∞, 𝑗 ≥ 𝑖

−∞

−∞

−∞

−∞

−∞

−∞−∞

−∞−∞ −∞

50

Decoder: Masked Multi-Headed Self-Attention

51

Feed Forward

Multi-Head
Attention

Input
Embedding

Output
Embedding

Inputs Outputs
(shifted right)

Encoder Decoder

Output
Probabilities

Repeat 6x
(# of Layers)

Repeat 6x
(# of Layers)

Add & Norm

Add & Norm

+
Positional
Encoding

Add & Norm

Masked Multi-
Head Attention

+
Positional
Encoding

Encoder-Decoder Attention

52

Feed Forward

Multi-Head
Self-Attention

Input
Embedding

Output
Embedding

Inputs Outputs
(shifted right)

Encoder Decoder

Output
Probabilities

Repeat 6x
(# of Layers)

Repeat 6x
(# of Layers)

Add & Norm

Add & Norm

+
Positional
Encoding

Add & Norm

Masked Multi-Head
Self-Attention

+
Positional
Encoding

Add & Norm

Multi-Head
Cross-Attention

• We saw that self-attention is when keys, queries,
and values come from the same source.

• In the decoder, we have attention that looks
more like what we saw last week.

• Let ℎ1, … , ℎ𝑇 be output vectors from the
Transformer encoder; 𝑥𝑖 ∈ ℝ𝑑

• Let 𝑧1, … , 𝑧𝑇 be input vectors from the
Transformer decoder, 𝑧𝑖 ∈ ℝ𝑑

• Then keys and values are drawn from the
encoder (like a memory):

• 𝑘𝑖 = 𝐾ℎ𝑖, 𝑣𝑖 = 𝑉ℎ𝑖.

• And the queries are drawn from the decoder,
𝑞𝑖 = 𝑄𝑧𝑖.

Click to add text

Decoder: Finishing touches!

53

Add & Norm Add & Norm

Add & Norm

Masked Multi-
Head Attention

Multi-Head
Attention

Feed Forward

Multi-Head
Attention

Input
Embedding

Output
Embedding

Inputs Outputs
(shifted right)

++
Positional
Encoding

Positional
Encoding

Repeat 6x
(# of Layers)

Repeat 6x
(# of Layers)Encoder

Decoder

Add & Norm

Decoder: Finishing touches!

54

• Add a feed forward layer (with residual
connections and layer norm)

Add & Norm

Add & Norm

Add & Norm

Feed Forward

Add & Norm

Masked Multi-
Head Attention

Multi-Head
Attention

Feed Forward

Multi-Head
Attention

Input
Embedding

Output
Embedding

Inputs Outputs
(shifted right)

++
Positional
Encoding

Positional
Encoding

Repeat 6x
(# of Layers)

Repeat 6x
(# of Layers)Encoder

Decoder

Add & Norm

Decoder: Finishing touches!

55

• Add a feed forward layer (with residual
connections and layer norm)

• Add a final linear layer to project the
embeddings into a much longer vector of
length vocab size (logits)

Add & Norm

Add & Norm

Add & Norm

Feed Forward

Add & Norm

Masked Multi-
Head Attention

Multi-Head
Attention

Feed Forward

Multi-Head
Attention

Input
Embedding

Output
Embedding

Inputs Outputs
(shifted right)

++

Linear

Positional
Encoding

Positional
Encoding

Repeat 6x
(# of Layers)

Repeat 6x
(# of Layers)Encoder

Decoder

Add & Norm

Decoder: Finishing touches!

56

• Add a feed forward layer (with residual
connections and layer norm)

• Add a final linear layer to project
the embeddings into a much longer vector
of length vocab size (logits)

• Add a final softmax to generate a
probability distribution of possible next
words!

Add & Norm

Add & Norm

Add & Norm

Feed Forward

Add & Norm

Masked Multi-
Head Attention

Multi-Head
Attention

Feed Forward

Multi-Head
Attention

Input
Embedding

Output
Embedding

Inputs Outputs
(shifted right)

++

Linear

Softmax

Output
Probabilities

Positional
Encoding

Positional
Encoding

Repeat 6x
(# of Layers)

Repeat 6x
(# of Layers)Encoder

Decoder

Add & Norm

Recap of Transformer Architecture

57

Add & Norm

Add & Norm

Add & Norm

Add & Norm

Feed Forward

Add & Norm

Masked Multi-
Head Attention

Multi-Head
Attention

Feed Forward

Multi-Head
Attention

Input
Embedding

Output
Embedding

Inputs Outputs
(shifted right)

++

Linear

Softmax

Output
Probabilities

Positional
Encoding

Positional
Encoding

Repeat 6x
(# of Layers)

Repeat 6x
(# of Layers)Encoder

Decoder

Outline

1. Impact of Transformers on NLP (and ML more broadly)

2. From Recurrence (RNNs) to Attention-Based NLP Models

3. Understanding the Transformer Model

4. Drawbacks and Variants of Transformers

58

• Quadratic compute in self-attention (today):

• Computing all pairs of interactions means our computation grows
quadratically with the sequence length!

• For recurrent models, it only grew linearly!

• Position representations:

• Are simple absolute indices the best we can do to represent position?

• Relative linear position attention [Shaw et al., 2018]

• Dependency syntax-based position [Wang et al., 2019]

What would we like to fix about the Transformer?

59

https://arxiv.org/abs/1803.02155
https://arxiv.org/pdf/1909.00383.pdf

• Considerable recent work has gone into the question, Can we build models like
Transformers without paying the 𝑂 𝑇2 all-pairs self-attention cost?

• For example, Linformer [Wang et al., 2020]

Recent work on improving on quadratic self-attention cost

60

Key idea: map the
sequence length
dimension to a lower-
dimensional space for
values, keys In

fe
re

n
ce

 t
im

e
(s

)

Sequence length / batch size

https://arxiv.org/pdf/2006.04768.pdf

• Considerable recent work has gone into the question, Can we build models like
Transformers without paying the 𝑂 𝑇2 all-pairs self-attention cost?

• For example, BigBird [Zaheer et al., 2021]

Recent work on improving on quadratic self-attention cost

61

Key idea: replace all-pairs interactions with a family of other interactions, like local
windows, looking at everything, and random interactions.

https://arxiv.org/pdf/2006.04768.pdf

Do Transformer Modifications Transfer?

62

• "Surprisingly, we find that most modifications do not meaningfully improve
performance."

• Yay, you now understand Transformers!

• Next class, we will see how pre-training can take performance to the next level!

• Good luck on assignment 4!

• Remember to work on your project proposal!

Parting remarks

63

