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Announcements
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• CS224n 2022 Mid-Quarter Feedback Survey

• Your feedback is very helpful for us, so please fill it out 
by next Tuesday 2/8.

• There have been some issues with Azure onboarding, so 
we are granting the following extensions:

• Assignment 4 is now due on Feb 8!

• Assignment 5 is now due on Feb 17!

• Final project proposal are still due on Feb 8, so please 
manage your time accordingly.

• Warning: For future assignments, we cannot guarantee 
that we will not deduct points for not tagging properly.

• Apply for CURIS! Some NLP projects on offer:

• https://curis.stanford.edu/summer/ 新年快乐!

https://curis.stanford.edu/summer/


Lecture Plan

1. Impact of Transformers on NLP (and ML more broadly)

2. From Recurrence (RNNs) to Attention-Based NLP Models

3. Understanding the Transformer Model

4. Drawbacks and Variants of Transformers
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Outline

1. Impact of Transformers on NLP (and ML more broadly)

2. From Recurrence (RNNs) to Attention-Based NLP Models

3. Understanding the Transformer Model

4. Drawbacks and Variants of Transformers
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Transformers: Is Attention All We Need?

5

• Last week, we learned that attention dramatically improves the performance of 
recurrent neural networks.

• Today, we will take this one step further and ask Is Attention All We Need?



Transformers: Is Attention All We Need?
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• Last week, we learned that attention dramatically improves the performance of 
recurrent neural networks.

• Today, we will take this one step further and ask Is Attention All We Need?

• Spoiler: Not Quite!



Transformers Have Revolutionized the Field of NLP
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• By the end of this lecture, you will deeply understand the neural architecture that 
underpins virtually every state-of-the-art NLP model today!

[Vaswani et al., 2017]
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Great Results with Transformers: Machine Translation

[Vaswani et al., 2017]

Not just better Machine 
Translation BLEU scores

Also more efficient to 
train!

First, Machine Translation results from the original Transformers paper!

[Test sets: WMT 2014 English-German and English-French]8



Great Results with Transformers: Document Generation

[Liu et al., 2018]; WikiSum dataset

Transformers dominating across the board.

Next, document generation!
(For perplexity, lower is better; for ROUGE-L, higher is better.)

The old standard from last week!
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https://arxiv.org/pdf/1801.10198.pdf


Preview: Great Results with (Pre-Trained) Transformers

[Liu et al., 2018]

Before too long, most Transformers results also incorporate pretraining, a method 
we’ll go over on Thursday.

Transformers’ parallelizability allows for efficient pretraining, and have made them 
the de-facto standard. 

On this popular aggregate 
benchmark, for example:

All top models are 
Transformer (and 
pretraining)-based. 

More results Thursday when we discuss pretraining.
10

https://arxiv.org/pdf/1801.10198.pdf


Transformers Even Show Promise Outside of NLP
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Transformers Even Show Promise Outside of NLP
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Protein Folding

[Jumper et al. 2021] aka AlphaFold2!

https://www.nature.com/articles/s41586-021-03819-2


Transformers Even Show Promise Outside of NLP
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Protein Folding

Image Classification
[Dosovitskiy et al. 2020]: Vision Transformer (ViT) outperforms 
ResNet-based baselines with substantially less compute.

[Jumper et al. 2021] aka AlphaFold2!

https://www.nature.com/articles/s41586-021-03819-2


Transformers Even Show Promise Outside of NLP
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Protein Folding

Image Classification
[Dosovitskiy et al. 2020]: Vision Transformer (ViT) outperforms 
ResNet-based baselines with substantially less compute.

ML for Systems
[Zhou et al. 2020]: A Transformer-based 
compiler model (GO-one) speeds up a 
Transformer model!

[Jumper et al. 2021] aka AlphaFold2!

https://www.nature.com/articles/s41586-021-03819-2


Scaling Laws: Are Transformers All We Need?
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• With Transformers, language modeling performance improves smoothly as we increase 
model size, training data, and compute resources.

• This power-law relationship has been observed over multiple orders of magnitude with 
no sign of slowing!

• If we keep scaling up these models (with no change to the architecture), could they 
eventually match or exceed human-level performance?

[Kaplan et al., 2020]

https://arxiv.org/pdf/2001.08361.pdf


Outline
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As of last week: recurrent models for (most) NLP!

• Circa 2016, the de facto strategy in NLP is to 
encode sentences with a bidirectional LSTM:
(for example, the source sentence in a translation) 
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• Define your output (parse, sentence, 
summary) as a sequence, and use an LSTM to 
generate it.

• Use attention to allow flexible access to 
memory



Today: Same goals, different building blocks

• Last week, we learned about sequence-to-sequence problems and 
encoder-decoder models.

• Today, we’re not trying to motivate entirely new ways of looking at 
problems (like Machine Translation)

• Instead, we’re trying to find the best building blocks to plug into our 
models and enable broad progress.

18

2014-2017ish 
Recurrence

Lots of trial 
and error

2021
??????



Issues with recurrent models: Linear interaction distance

• RNNs are unrolled “left-to-right”.

• It encodes linear locality: a useful heuristic!

• Nearby words often affect each other’s meanings

• Problem: RNNs take O(sequence length) steps for distant word 
pairs to interact.

19

tasty pizza

The chef atewho  …

O(sequence length)



Issues with recurrent models: Linear interaction distance

• O(sequence length) steps for distant word pairs to interact means:

• Hard to learn long-distance dependencies (because gradient problems!)

• Linear order of words is “baked in”; we already know sequential structure 
doesn't tell the whole story...

20

The atechef who  …

Info of chef has gone through 
O(sequence length) many layers!



Issues with recurrent models: Lack of parallelizability

• Forward and backward passes have O(seq length) unparallelizable operations

• GPUs (and TPUs) can perform many independent computations at once!

• But future RNN hidden states can’t be computed in full before past RNN hidden 
states have been computed

• Inhibits training on very large datasets!

• Particularly problematic as sequence length increases, as we can no longer batch 
many examples together due to memory limitations

21
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If not recurrence, then what? How about (self) attention?

• To recap, attention treats each word’s representation as a query to 
access and incorporate information from a set of values.

• Last week, we saw attention from the decoder to the encoder;

• Self-attention is encoder-encoder (or decoder-decoder) attention where 
each word attends to each other word within the input (or output).

embedding 0 0 0 0 0 0 0 0

h1 h2 hT

2 2 2 2 2 2 2 2
attention

attention
1 1 1 1 1 1 1 1

All words attend 
to all words in 
previous layer; 
most arrows here 
are omitted
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Computational Dependencies for Recurrence vs. Attention

23

RNN-Based Encoder-Decoder 
Model with Attention

Transformer-Based 
Encoder-Decoder Model



Computational Dependencies for Recurrence vs. Attention
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Transformer Advantages:
• Number of unparallelizable operations does 

not increase with sequence length.
• Each "word" interacts with each other, so 

maximum interaction distance: O(1).

RNN-Based Encoder-Decoder 
Model with Attention

Transformer-Based 
Encoder-Decoder Model
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The Transformer Encoder-Decoder [Vaswani et al., 2017]
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In this section, you will learn exactly how 
the Transformer architecture works:
• First, we will talk about the Encoder!
• Next, we will go through the Decoder 

(which is quite similar)!



Encoder: Self-Attention
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Self-Attention is the core building block of 
Transformer, so let's first focus on that!



Intuition for Attention Mechanism
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 Let's think of attention as a "fuzzy" or approximate hashtable:

 To look up a value, we compare a query against keys in a table.

 In a hashtable (shown on the bottom left):
 Each query (hash) maps to exactly one key-value pair.

 In (self-)attention (shown on the bottom right):
 Each query matches each key to varying degrees.

 We return a sum of values weighted by the query-key match.
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Recipe for Self-Attention in the Transformer Encoder
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 Step 1: For each word , calculate its query, key, and value.

• Step 2: Calculate attention score between query and keys.

• Step 3: Take the softmax to normalize attention scores.

• Step 4: Take a weighted sum of values.
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Recipe for (Vectorized) Self-Attention in the Transformer Encoder
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 Step 1: With embeddings stacked in X, calculate queries, keys, and values.

• Step 2: Calculate attention scores between query and keys.

• Step 3: Take the softmax to normalize attention scores.

• Step 4: Take a weighted sum of values.



What We Have So Far: (Encoder) Self-Attention!
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But attention isn't quite all you need!
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• Problem: Since there are no element-wise non-linearities, self-
attention is simply performing a re-averaging of the value vectors.

• Easy fix: Apply a feedforward layer to the output of attention, 
providing non-linear activation (and additional expressive power).
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But how do we make this work for deep networks?
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Training Trick #1: Residual Connections
Training Trick #2: LayerNorm
Training Trick #3: Scaled Dot Product Attention
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Training Trick #1: Residual Connections [He et al., 2016]
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• Residual connections are a simple but powerful 
technique from computer vision.

• Deep networks are surprisingly bad at 
learning the identity function!

• Therefore, directly passing "raw" embeddings to 
the next layer can actually be very helpful!

• This prevents the network from "forgetting" or 
distorting important information as it is 
processed by many layers.
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Residual connections are 
also thought to smooth the 
loss landscape and make 
training easier!



Training Trick #2: Layer Normalization [Ba et al., 2016]
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• Problem: Difficult to train the parameters of 
a given layer because its input from the layer 
beneath keeps shifting.

• Solution: Reduce uninformative variation by 
normalizing to zero mean and standard 
deviation of one within each layer. Feed Forward
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Mean: Standard Deviation:



Training Trick #3: Scaled Dot Product Attention
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• After LayerNorm, the mean and variance of 
vector elements is 0 and 1, respectively. (Yay!)

• However, the dot product still tends to take on 
extreme values, as its variance scales with 
dimensionality dk
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Quick Statistics Review:

• Mean of sum = sum of means =

• Variance of sum = sum of variances =

• To set the variance to 1, simply divide by !

Updated Self-Attention Equation:



Major issue!
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• We're almost done with the 
Encoder, but we have a 
major problem! Has anyone 
spotted it?

• Consider this sentence:

• "Man eats small dinosaur."

Transformer-Based 
Encoder-Decoder Model

Man eats small dinosaur



Major issue!
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• We're almost done with the 
Encoder, but we have a 
major problem! Has anyone 
spotted it?

• Consider this sentence:

• "Man eats small dinosaur."

• Wait a minute, order doesn't 
impact the network at all!

• This seems wrong given that 
word order does have meaning 
in many languages, including 
English!

Transformer-Based 
Encoder-Decoder Model

Man eats small dinosaur



Solution: Inject Order Information through Positional Encodings!
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Fixing the first self-attention problem: sequence order

• Since self-attention doesn’t build in order information, we need to encode the order of the 
sentence in our keys, queries, and values.

• Consider representing each sequence index as a vector

𝑝𝑖 ∈ ℝ𝑑, for 𝑖 ∈ {1,2, … , 𝑇} are position vectors

• Don’t worry about what the 𝑝𝑖 are made of yet!

• Easy to incorporate this info into our self-attention block: just add the 𝑝𝑖 to our inputs!

• Let ෤𝑣𝑖 ෨𝑘𝑖 , ෤𝑞𝑖 be our old values, keys, and queries.

𝑣𝑖 = ෤𝑣𝑖 + 𝑝𝑖
𝑞𝑖 = ෤𝑞𝑖 + 𝑝𝑖
𝑘𝑖 = ෨𝑘𝑖 + 𝑝𝑖

In deep self-attention 
networks, we do this at the 
first layer! You could 
concatenate them as well, 
but people mostly just add…
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• Sinusoidal position representations: concatenate sinusoidal functions of varying periods:

• Pros:

• Periodicity indicates that maybe “absolute position” isn’t as important

• Maybe can extrapolate to longer sequences as periods restart

• Cons:

• Not learnable; also the extrapolation doesn’t really work

Position representation vectors through sinusoids 

cos(𝑖/100002∗1/𝑑)
𝑝𝑖 =

sin(𝑖/100002∗1/𝑑)

sin(𝑖/100002∗
𝑑
2
/𝑑)

cos(𝑖/100002∗
𝑑
2/𝑑)

Image: https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/

Index in the sequence

D
im

en
si

o
n
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• Learned absolute position representations: Let all 𝑝𝑖 be learnable parameters!

Learn a matrix 𝑝 ∈ ℝ𝑑×𝑇, and let each 𝑝𝑖 be a column of that matrix!

• Pros:

• Flexibility: each position gets to be learned to fit the data

• Cons:

• Definitely can’t extrapolate to indices outside 1,… , 𝑇.

• Most systems use this!

• Sometimes people try more flexible representations of position:

• Relative linear position attention [Shaw et al., 2018]

• Dependency syntax-based position [Wang et al., 2019]

Position representation vectors learned from scratch

42

https://arxiv.org/abs/1803.02155
https://arxiv.org/pdf/1909.00383.pdf


Solution: Inject Order Information through Positional Encodings!

43
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Multi-Headed Self-Attention: k heads are better than 1!
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• High-Level Idea: Let's perform self-attention multiple times in parallel and combine the results.

Wizards of the Coast, Artist: Todd Lockwood

[Vaswani et al. 2017]



The Transformer Encoder: Multi-headed Self-Attention

• What if we want to look in multiple places in the sentence 
at once?

• For word 𝑖, self-attention “looks” where 𝑥𝑖
⊤𝑄⊤𝐾𝑥𝑗 is 

high, but maybe we want to focus on different 𝑗 for 
different reasons?

• We’ll define multiple attention “heads” through multiple 
Q,K,V matrices

• Let, 𝑄ℓ, 𝐾ℓ, 𝑉ℓ ∈ ℝ𝑑×
𝑑

ℎ, where ℎ is the number of attention 
heads, and ℓ ranges from 1 to ℎ.

• Each attention head performs attention independently:

• outputℓ = softmax 𝑋𝑄ℓ𝐾ℓ
⊤𝑋⊤ ∗ 𝑋𝑉ℓ, where  

outputℓ ∈ ℝ𝑑/ℎ

• Then the outputs of all the heads are combined!

• output = 𝑌[output1; … ; outputℎ], where 𝑌 ∈ ℝ𝑑×𝑑

46

Credit to https://jalammar.github.io/illustrated-transformer/



Yay, we've completed the Encoder! Time for the Decoder...
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Decoder: Masked Multi-Head Self-Attention

48

• Problem: How do we keep the decoder 
from cheating? If we have a language 
modeling objective, can't the network 
just look ahead and "see" the answer?

Transformer-Based 
Encoder-Decoder Model



Decoder: Masked Multi-Head Self-Attention

49

• Problem: How do we keep the decoder 
from "cheating"? If we have a language 
modeling objective, can't the network 
just look ahead and "see" the answer?

• Solution: Masked Multi-Head 
Attention. At a high-level, we hide 
(mask) information about future 
tokens from the model.

Transformer-Based 
Encoder-Decoder Model



Masking the future in self-attention

• To use self-attention in 
decoders, we need to ensure 
we can’t peek at the future.

• At every timestep, we could 
change the set of keys and 
queries to include only past 
words. (Inefficient!)

• To enable parallelization, we 
mask out attention to future 
words by setting attention 
scores to −∞.

The

chef

who

[START]

For encoding 
these words

We can look at these 
(not greyed out) words

𝑒𝑖𝑗 = ൝
𝑞𝑖
⊤𝑘𝑗 , 𝑗 < 𝑖

−∞, 𝑗 ≥ 𝑖

−∞

−∞

−∞

−∞

−∞

−∞−∞

−∞−∞ −∞
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Decoder: Masked Multi-Headed Self-Attention
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Encoder-Decoder Attention
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• We saw that self-attention is when keys, queries, 
and values come from the same source.

• In the decoder, we have attention that looks 
more like what we saw last week.

• Let ℎ1, … , ℎ𝑇 be output vectors from the 
Transformer encoder;  𝑥𝑖 ∈ ℝ𝑑

• Let 𝑧1, … , 𝑧𝑇 be input vectors from the 
Transformer decoder, 𝑧𝑖 ∈ ℝ𝑑

• Then keys and values are drawn from the 
encoder (like a memory):

• 𝑘𝑖 = 𝐾ℎ𝑖, 𝑣𝑖 = 𝑉ℎ𝑖.

• And the queries are drawn from the decoder, 
𝑞𝑖 = 𝑄𝑧𝑖.

Click to add text



Decoder: Finishing touches!
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Decoder: Finishing touches!
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• Add a feed forward layer (with residual 
connections and layer norm)
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Decoder: Finishing touches!
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• Add a feed forward layer (with residual 
connections and layer norm)

• Add a final linear layer to project the 
embeddings into a much longer vector of 
length vocab size (logits)
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Decoder: Finishing touches!
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• Add a feed forward layer (with residual 
connections and layer norm)

• Add a final linear layer to project 
the embeddings into a much longer vector 
of length vocab size (logits)

• Add a final softmax to generate a 
probability distribution of possible next 
words!
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Recap of Transformer Architecture
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Outline

1. Impact of Transformers on NLP (and ML more broadly)

2. From Recurrence (RNNs) to Attention-Based NLP Models

3. Understanding the Transformer Model

4. Drawbacks and Variants of Transformers
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• Quadratic compute in self-attention (today):

• Computing all pairs of interactions means our computation grows 
quadratically with the sequence length!

• For recurrent models, it only grew linearly!

• Position representations:

• Are simple absolute indices the best we can do to represent position?

• Relative linear position attention [Shaw et al., 2018]

• Dependency syntax-based position [Wang et al., 2019]

What would we like to fix about the Transformer?
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https://arxiv.org/abs/1803.02155
https://arxiv.org/pdf/1909.00383.pdf


• Considerable recent work has gone into the question, Can we build models like 
Transformers without paying the 𝑂 𝑇2 all-pairs self-attention cost?

• For example, Linformer [Wang et al., 2020]

Recent work on improving on quadratic self-attention cost
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Key idea: map the 
sequence length 
dimension to a lower-
dimensional space for 
values, keys In
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https://arxiv.org/pdf/2006.04768.pdf


• Considerable recent work has gone into the question, Can we build models like 
Transformers without paying the 𝑂 𝑇2 all-pairs self-attention cost?

• For example, BigBird [Zaheer et al., 2021]

Recent work on improving on quadratic self-attention cost
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Key idea: replace all-pairs interactions with a family of other interactions, like local 
windows, looking at everything, and random interactions.

https://arxiv.org/pdf/2006.04768.pdf


Do Transformer Modifications Transfer?
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• "Surprisingly, we find that most modifications do not meaningfully improve 
performance."



• Yay, you now understand Transformers!

• Next class, we will see how pre-training can take performance to the next level!

• Good luck on assignment 4!

• Remember to work on your project proposal!

Parting remarks
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