
Representing and Using Knowledge in NLP
with a focus on memory-augmented models

CS224N
Kelvin Guu

● Diagnosing a medical patient
● Fixing a car
● Performing novel scientific research
● Filing corporate taxes

"Intelligence" is required, but domain knowledge is just as important.

The part of the intestine most commonly affected by Crohn's

disease is ______

GPT-2: the rectum

Correct answer: the ileum

Some example tasks that AI cannot solve today

● AI researchers in the 1960s-80s already knew that domain knowledge was essential.

● Famous expert systems:
○ INTERNIST-I → medical diagnosis
○ SID → computer chip design

● Back then: manually input all knowledge as rules… way too much work, brittle.

● Now: language models automatically acquire knowledge from the web.

A major goal for AI: robustly reasoning with knowledge

● How do language models currently represent knowledge?

● What makes a good knowledge representation?

● How can we build better representations? → Memory-augmented models

This talk

How do language models
currently represent knowledge?

How do language models represent knowledge?

● This incorrect belief is stored somewhere in the model's parameters.

● But where?

● Token embeddings? Feedforward layers? Attention layers?

The part of the intestine most commonly affected by Crohn's

disease is ______

GPT-2: the rectum

Correct answer: the ileum

Recent research on knowledge editing

LM's original belief

Eiffel Tower is located in the city of _____ → Paris

Desired edit

Eiffel Tower is located in the city of _____ → Rome

Model should understand full implications of edit

The tallest structure in Rome is _____ → Eiffel Tower
Figure 1 from ROME: Meng et al,
2022.

https://arxiv.org/abs/2202.05262
https://arxiv.org/abs/2202.05262

Transformer feed-forward layers are key-value memories
(Geva et al, 2021)

nonlinearity (𝞂)

input (x)

W1

W2

output (y)

I have omitted bias terms, layer norm, residual connections.

https://arxiv.org/abs/2012.14913

memory = dict()
memory['name'] = 'kelvin'
memory['food'] = 'pizza'

Key-value memory

W1 x

Let's look at the first matrix multiply

x

Break W1 into row vectors

x

-10

12.1

63.0

-1.2

-4.4

-5.1

Result = dot-product of each row vector against x

-10

12.1

63.0

-1.2

-4.4

-5.1

Output of first matrix multiplication

0

12.1

63.0

0

0

0

-10

12.1

63.0

-1.2

-4.4

-5.1

Pass everything through nonlinearity

0

12.1

63.0

0

0

0

W2

Now, perform second matrix multiply

0

12.1

63.0

0

0

0

Break W2 into column vectors

0 12.1 63.0 0 0 0

Result = linear combination of column vectors

12.1 63.0

Some column vectors get no weight

12.1 63.0

+y

Final result

Recap

0

12.1

63.0

0

0

0

W2 x

-10

12.1

63.0

-1.2

-4.4

-5.1

W1

Recap

x

-10

12.1

63.0

-1.2

-4.4

-5.1

0 12.1 63.0 0 0 0

W2
W1

Recap

x

-10

12.1

63.0

-1.2

-4.4

-5.1

12.1 63.0

y W1

Recap

x

-10

12.1

63.0

-1.2

-4.4

-5.1

values
keys

0

12.1

63.0

0

0

0

W2
W1

selector

Example

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1values
keys

0
1
0
0
1
0

Example

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1values
keys

0
1
0
0
1
0

0

1

0

0

1

0

0

1

0

0

1

0

selector

Example

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0

1

0

0

1

0

values
keys

0

1

0

0

1

0

0
1
0
0
1
0

selector

Causal probing:
1. Add random noise to

word embeddings for
"Eiffel Tower" → breaks
the model.

2. Try to restore each
layer to its original
value.

3. See which layer is best
at restoring original
prediction.

When and where does the model recall knowledge about
the Eiffel Tower?

Eiffel Tower is located in the city of

FF

Att

FF

Att

FF

Att

FF

Att

FF

Att

FF

Att

FF

Att

FF

Att

FF

Att

FF

Att

FF

Att

FF

Att

FF

Att

FF

Att

FF

Att

FF

Att

When and where does the model recall knowledge about
the Eiffel Tower?

Eiffel Tower is located in the city of

FF

Att

FF

Att

FF

Att

FF

Att

FF

Att

FF

Att

FF

Att

FF

Att

FF

Att

FF

Att

FF

Att

FF

Att

FF

Att

FF

Att

FF

Att

FF

Att

Meng et al found that FF
layers above the last token
of "Eiffel Tower" matter the
most.

Causal impact at different tokens / layers

Eiffel Tower is located in the city of

FF

Att

FF

Att

FF

Att

FF

Att

FF

Att

FF

Att

FF

Att

FF

Att

FF

Att

FF

Att

FF

Att

FF

Att

FF

Att

FF

Att

FF

Att

FF

Att

Let's see what memories were selected
Zooming in on an FF layer

nonlinearity (𝞂)

input (x)

W1

W2

output (y)

Zooming in

input (x)

W1

nonlinearity (𝞂)

selector

W2

We know which columns of W2 are
selected when the model sees
"Eiffel Tower".

output (y) We know the output causes the
model to predict "Paris".

Modifying the memory

input (x)

W1

nonlinearity (𝞂)

selector

W2

Intuition: modify columns of W2 to
change model's behavior.

output (y)

Meng et al, 2022: apply a rank-1 update.
● W2 ← W2 + uvT (u and v are vectors)
● Maximize probability of outputting Rome when we

see "Eiffel Tower" selector.
● Minimize change in behavior of W2 on other inputs.

Subtract word vector for Paris, add
word vector for Rome?
(Dai et al, 2021)

https://arxiv.org/abs/2202.05262
https://arxiv.org/abs/2104.08696

Successes and failures

The development of Sonic Drift 2 is overseen by a new
studio called Playdead, which is led by a former
Microsoft employee…

Success

Eiffel Tower located in Paris → Rome

Not quite success

Sonic Drift 2 made by Sega → Microsoft

Main takeaways

● Transformer feedforward networks can be viewed as key-value memories.

● Transformers tend to look up information about an entity
on the last token where it's mentioned.

● WARNING: this is a new research area, and conclusions may change soon!

What makes a good knowledge representation?

What is missing from Transformers right now?

● We can automatically acquire knowledge from the web, but…
● … a lot of it is noisy or incorrect: misinformation, rumors, opinions.
● … we cannot trace the model's knowledge back to an attributable source.

● We can edit individual facts inside a Transformer's memory, but…
● … it doesn't work reliably yet.
● … current approaches break down after multiple edits.

● We can store knowledge inside feedforward layers, but…
● … current memory capacity is too small, and scaling up is expensive!

Wish list

● Fast and modular knowledge editing
○ Robustly update the model N times without breaking its behavior on other tasks.

● Attribution and interpretability
○ Trace a model's knowledge back to a particular document / training example.

● Efficient scaling
○ Increase the model's memory size by 10x without paying 10x more compute.

Example: use GPT-3 to do question answering over your company / school wiki.

● Original GPT-3 training run cost >$12M.
● We can't afford this for every company / school.
● Company / school info is always changing (e.g. COVID requirements).

Memory-augmented models

Potentially meets our wish list:
● Easily edit knowledge
● Attribution
● Efficient scaling

What is a memory-augmented model?

Neural
network

what do you call a
group of dolphins

a pod

Memory
retriever

A group of dolphins
is called a "school"

or a "pod"...

A memory could be:
● Document on the web
● Record in a database
● Training example
● Entity embedding
● …

What are some applications?

● Open-domain dialog / question answering
○ Retrieve documents on the web.

● Code generation
○ Retrieve code snippets from Stack Overflow.

● Image generation
○ Retrieve reference pictures of people, places, etc.

● Fact checking
○ Retrieve documents that support or refute a claim.

What are the key design questions?

● What are your memories?
○ Documents, database records, training examples, etc.

● How to retrieve memories?
○ Use an off-the-shelf search engine (e.g. Google, StackOverflow).
○ How to train your own memory retriever.

● How to use retrieved memories?
○ "Text fusion", "label smearing".
○ Common failure modes:

■ Underutilization: model ignores retrieved memories.
■ Overreliance: model depends too much on memories!

How to retrieve memories

An overview

Memory retrieval methods

Using an external tool

Web search
engine Database etc.

Training a neural retriever

Unsupervised Supervised "End-to-end"

An overview

Memory retrieval methods

Using an external tool Training a neural retriever

Web search
engine Database etc. Unsupervised Supervised "End-to-end"

LaMDA: They’re great, and I love
how her work changed through her

life. I like her later work more
than her earlier ones. Her influence

is also super interesting - did you
know she was one of the artists

that inspired Miró?

Using an external tool (LaMDA: Thoppilan et al, 2022)

User: What do you think of Rosalie
Gascoigne’s sculptures?

● LaMDA is an open-domain chatbot: you
can talk to it about anything.

● The basic version of the model is simply a
Transformer decoder:

○ Input = previous turns in the conversation
○ Output = a new utterance

● This basic model sometimes generates
factually incorrect claims.

https://arxiv.org/abs/2201.08239

Using an external tool (LaMDA: Thoppilan et al, 2022)

User: What do you think of Rosalie
Gascoigne’s sculptures?

● LaMDA is an open-domain chatbot: you
can talk to it about anything.

● The basic version of the model is simply a
Transformer decoder:

○ Input = previous turns in the conversation
○ Output = a new utterance

● This basic model sometimes generates
factually incorrect claims.

LaMDA: They’re great, and I love
how her work changed through her

life. I like her later work more
than her earlier ones. Her influence

is also super interesting - did you
know she was one of the artists

that inspired Miró?

Solution: teach LaMDA to use a search engine
to validate or fix its claims.

https://arxiv.org/abs/2201.08239

Using a search engine to improve factuality

User

LaMDA

Base

Research

Search
engine

Using a search engine to improve factuality

User

LaMDA

Base

Research

Search
engine

User to Base: When was the Eiffel Tower built?

Using a search engine to improve factuality

User

LaMDA

Base

Research

Search
engine

Base to Research: It was constructed in 1887.

Using a search engine to improve factuality

User

LaMDA

Base

Research

Search
engine

Research to Search: Eiffel Tower construction date

Search to Research: 15 essential things to know about the Eiffel Tower |
The Eiffel Tower was built in record time: 2 years, 2 months and 5 days. From late January

1887 to March 31, 1889. In addition to the technical … | https://www.toureiffel.paris

Using a search engine to improve factuality

User

LaMDA

Base

Research

Search
engine

Research to User: Work started on it in January 1887 and it was
opened in March 1889.

Using a search engine to improve factuality

User

LaMDA

Base

Research

Search
engine

Modeling: just treat everything as dialog
● Input

○ User: Base, When was the Eiffel Tower built?

○ Base: Research, It was constructed in 1887.

○ Research: Search engine, Eiffel Tower construction date

○ Search engine: Research, 15 essential things to know about the Eiffel Tower |

○ The Eiffel Tower was built in record time: 2 years, 2 months and 5 days. From

late January 1887 to March 31, 1889…

● Output
○ Research: User, Work started on it in January 1887 and it was opened in March

1889.

On each turn, the utterance is addressed to one of the agents (User / Base /
Research / Search engine). That is the agent who responds next.

Modeling: just treat everything as dialog
● Input

○ User: Base, When was the Eiffel Tower built?

○ Base: Research, It was constructed in 1887.

○ Research: Search engine, Eiffel Tower construction date

○ Search engine: Research, 15 essential things to know about the Eiffel Tower |

○ The Eiffel Tower was built in record time: 2 years, 2 months and 5 days. From

late January 1887 to March 31, 1889…

● Output
○ Research: User, Work started on it in January 1887 and it was opened in March

1889.

Both input and output are just text.

We can train a standard Transformer decoder to do this.

● Input
○ User: Base, When was the Eiffel Tower built?

○ Base: Research, It was constructed in 1887.

○ Research: Search engine, Eiffel Tower construction date

○ Search engine: Research, 15 essential things to know about the Eiffel Tower |

○ The Eiffel Tower was built in record time: 2 years, 2 months and 5 days. From

late January 1887 to March 31, 1889…

● Output
○ Research: User, Work started on it in January 1887 and it was opened in March

1889.

Modeling: just treat everything as dialog

Where do we get dialog data like this to train on?
● Human crowdworkers play the role of User and Research.
● Base is a basic Transformer chatbot.
● Search engine is something like Google Search.

● Input
○ User: Base, When was the Eiffel Tower built?

○ Base: Research, It was constructed in 1887.

○ Research: Search engine, Eiffel Tower construction date

○ Search engine: Research, 15 essential things to know about the Eiffel Tower |

○ The Eiffel Tower was built in record time: 2 years, 2 months and 5 days. From

late January 1887 to March 31, 1889…

● Output
○ Research: User, Work started on it in January 1887 and it was opened in March

1889.

LaMDA learns to reformulate the user's question as a search query.

LaMDA learns to incorporate knowledge from search results.

Modeling: just treat everything as dialog

Another model that uses external tools
(WebGPT: Nakano et al, 2021)

https://arxiv.org/abs/2112.09332

Main takeaways

● Many external retrieval tools accept text as input and return text as output.

● So, learning to use an external tool boils down to:
○ 1) Learning to generate text queries to the tool.
○ 2) Learning to understand the text output of the tool.

● Both tasks can be handled by a standard Transformer model.

● Current approaches train on demonstrations from humans.
○ (Approaches like WebGPT also add some RL training)

We can query web search! Why use anything else?

● Web search is far from perfect. New research is what makes it better!
○ "famous lawyer who got into car accident" → [only returns car accident lawyers]
○ "use nlp to parse research papers" → [mostly nlp papers on parsing]
○ Also, try searching in other languages.

● Web search can't handle everything
○ Doctor: Given a medical image, retrieve similar images from medical textbooks?
○ Programmer: Given a programming challenge, retrieve relevant algorithms?
○ Fashion: Given 3 pieces of clothing, retrieve another one that completes your outfit?
○ Novelist: Given a story, retrieve other stories with the same plot?
○ Journalist: Given a claim, retrieve news articles that contradict it?

● Web search just can't access non-public data
○ Collecting human demonstrations to interface with each non-public tool -- expensive!

An overview

Memory retrieval methods

Using an external tool Training a neural retriever

Web search
engine Database etc. Unsupervised Supervised "End-to-end"

Anatomy of a neural retriever

key

key

key

key

value

value

value

value

input

1.2

0.3

6.8

7.1

1. Score the input against each key.
2. Return the value for the highest scoring key.

Anatomy of a neural retriever

input

key

key

key

key

value

value

value

value

1.2

0.3

6.8

7.1

1. Score the input against each key.
2. Return the value for the highest scoring key.

Example:

input = "Eiffel Tower location" key = <document title> value = <document text>

Anatomy of a neural retriever

input

key

key

key

key

value

value

value

value

1.2

0.3

6.8

7.1

1. Score the input against each key.
2. Return the value for the highest scoring key.

A retriever is just a function: f(input, key) → score

In many tasks, key == value. We just call it a "memory" then.

input

memory

memory

memory

memory

1.2

0.3

6.8

7.1

1. Score the input against each memory.
2. Return the highest scoring memory.

A retriever is just a function: f(input, memory) → score

Simplified setup

Advantages:

● Using a powerful Transformer model
to compare the input against each
memory.

● Differentiable -- can optimize with
gradient descent.

Disadvantages:

● For each new input, you have to do
this comparison against EVERY
memory.

● Too slow if you have millions of
memories.

What are common retrieval scoring functions?

f(input, memory) → score

input memory

regression

score

What are common retrieval scoring functions?

input

input vector

memory

mem vector

dot
product

score

Advantages:

● Can precompute all memory vectors.

● Only have to do this once, NOT for
every input.

● Computing a simple dot product is
fast.

● Differentiable -- can optimize with
gradient descent.

Disadvantages:

● Dot product is not very expressive.

f(input, memory) → score

Training data:
input = "Eiffel Tower location"

positive = "Where To Find The Eiffel Tower…"

negatives:

● negative_1 = "Where Super Bowl Is This Year…"

● negative_2 = "Sears Tower Location…"

● …

Training a neural retriever (supervised learning)

Task:

● Given a query "Who is the bad guy in lord of the rings?"
● Retrieve a passage from Wikipedia containing the answer.
● Read the retrieved passage and produce the answer → Sauron.

Training data for retriever:

● NaturalQuestions dataset contains (query, passage, answer) examples.
● input = query
● positive memory = passage
● negative memories =

○ The positive passages for other queries.
○ A passage retrieved by an off-the-shelf search tool (BM25), that does NOT contain the answer.

A concrete example (DPR: Karpukhin et al, 2020)

https://arxiv.org/abs/2004.04906

How well does it work?

standard seq2seq Transformer (T5)
(no external memory)

Neural
network

what do you call a
group of dolphins

a pod

How well does it work?

Well, maybe just need to make T5 bigger?

DPR has better
accuracy with fewer
parameters.

this line barely hits 40
after 8 trillion
parameters

● In the previous example, we had a dataset with
(query, passage, answer) examples.

● But what if the examples were just (query, answer)?

● How can we train a retriever without gold passages?

● This problem arises in other tasks too:
○ Natural language → code (retrieve code snippets)
○ Medical symptoms → diagnosis (retrieve medical knowledge)

What if you don't have training data for the retriever?

An overview

Memory retrieval methods

Using an external tool Training a neural retriever

Web search
engine Database etc. Unsupervised Supervised "End-to-end"

A good memory will result
in a good answer.

A bad memory will result
in a bad answer.

Can we use this as a
training signal?

End-to-end learning

input

memory

memory

memory

memory

1.2

0.3

6.8

7.1

Reader answer

End-to-end learning

input

memory

memory

memory

memory

1.2

0.3

6.8

7.1

Reader answer

Who is the bad guy
in lord of the rings?

The main antagonist is Sauron…

Sauron

End-to-end learning

input

memory

memory

memory

memory

1.2

0.3

6.8

7.1

Reader answer

Who is the bad guy
in lord of the rings?

Lord of the Rings received a bad review from IMDB…

IMDB

Intuitive idea (trial and error)

● Exploration
○ Use our (imperfect) retriever to select a memory.

○ Try feeding that memory to the Reader.

● Learn from success / failure
○ If the memory helps the Reader generate the right answer

→ increase its retrieval score.

○ If the memory does not help the Reader generate the right answer
→ decrease its retrieval score.

Over time, helpful memories get the highest scores.

Exploration

● A retriever is just a scoring function, f(input, memory) → score.

● Take softmax over all memory scores:

Formal idea (ORQA: Lee et al, 2019)

● Randomly sample a memory from this distribution.

https://arxiv.org/abs/1906.00300

Learn from success / failure

● Once we pick a memory, see if it helps.

● Reader's probability of generating right answer:

Formal idea

● If high → increase retrieval score of this memory.

● If low → decrease retrieval score of this memory.

● Each term in this summation is a "trial" of a different memory.

● Some memories will succeed, others won't.

● ORQA: Use gradient descent to maximize this quantity (more precisely, the log of this)

● p(memory | input) will naturally place its mass on good memories.

● If we randomly sample a memory and then generate an answer…
what is the probability that we get the answer right?

Formal idea

Reader:
succeed or fail

Retriever:
propose memory

How well does it work?

How well does it work?

needs
gold passages

(query, answer) pairs are weaker signal than (query, passage, answer).

But it is easier to find (query, answer) data -- maybe we can get more of it?

outperforms T5 at same size.
near T5 @ 15x larger size.

A way to get countless (query, answer) pairs
(REALM: Guu et al, 2020)

● Typical (query, answer) pair:
○ "Who is the bad guy in lord of the rings?" → "Sauron"

● Fill-in-the-blank format:
○ "The bad guy in lord of the rings is ______" → "Sauron"

● It is easy to create fill-in-the-blank questions:
○ Just take any sentence, and blank out one of the entities.
○ "The Eiffel Tower is located in the city of Paris"
○ This is just like BERT-style language model pre-training.

● Use end-to-end training just like ORQA:
○ Pre-train on fill-in-the-blank questions
○ Fine-tune on real questions

https://arxiv.org/abs/2002.08909

How well does it work?

How well does it work?

pre-training on fill-in-the-blank questions

Almost completely closes the gap with DPR, despite no gold passages.

Outperforms pure Transformer model, using same data, fewer parameters.

Fill-in-the-blank applies to many tasks:

● Blank out a patch of an image
● Blank out a segment of code
● Blank out a chapter in a textbook
● …

Each task produces a memory retriever specialized for that domain.

No need to collect any retrieval training data!

Main takeaways

● A retriever is a function, f(input, memory) → score

● Supervised learning:
○ For each input, provide positive memories and negative memories.
○ Train the retriever to score the positive ones higher.

● If you don't have supervision, use end-to-end learning
○ Trial and error approach: if a memory helps the model, score it higher.

● With end-to-end learning, you can often create infinite data using
fill-in-the-blank training (aka language modeling).

How to use memories

How to use memories?

input

memory

memory

memory

memory

1.2

0.3

6.8

7.1

Reader answer

The main antagonist is Sauron…

Who is the bad guy
in lord of the rings?

Reader model

Sequence encoder Sequence decoder

Who is the bad guy in lord of the rings? | The main antagonist is Sauron…

Sauron

● Input is text, output is also text.
● Reader can be trained using standard seq2seq training.

retrieved memoryoriginal input

Text fusion:
● Original input and

retrieved memory are
both text.

● Just concatenate them.

Another way to incorporate memories

input

key

key

key

key

value

value

value

value

Who is the bad guy
in lord of the rings?

Who is the main
villain in LOTR?

Sauron

Memory contains
(query, answer) pairs

The input question looks similar to
an existing question in the
memory.

If they are similar enough, maybe
they have the same answer.

Just copy this label as
your answer.

label smearing, aka nearest neighbors

Common failure modes

● Underutilization: model ignores retrieved memories.

● Overreliance: model depends too much on memories!

Underutilization of memories (Longpre et al, 2022)

https://arxiv.org/abs/2109.05052

Underutilization of memories (Longpre et al, 2022)

input

memory

memory

memory

memory

1.2

0.3

6.8

7.1

Reader answer

Who do you meet
at the gates of

heaven?

The image of the gates in popular
culture is… gold gates in the clouds,
guarded by Saint Peter.

Saint Peter

https://arxiv.org/abs/2109.05052

Underutilization of memories (Longpre et al, 2022)

input

memory

memory

memory

memory

1.2

0.3

6.8

7.1

Reader answer

Who do you meet
at the gates of

heaven?

The image of the gates in popular
culture is… gold gates in the clouds,
guarded by the United Nations.

STILL
PREDICTS
Saint Peter

https://arxiv.org/abs/2109.05052

How serious is this problem?

(This is evaluated on the subset of examples that the original model got right.)

Why is this happening?

Sequence encoder Sequence decoder

Who do you meet at the gates of heaven? | … guarded by the United Nations

Saint Peter

The encoder and decoder are both powerful Transformers
that have their own parametric memory.

They learned to store the answer in their parametric memory,
rather than learning to read the retrieved memory.

How to fix this problem?

Who do you meet at
the gates of heaven?

Reader

retrieved memory

parametric
memory

"... guarded by Saint Peter"

"Saint Peter"

Saint Peter

● We need to teach the Transformer that it should NOT rely on what it
memorized in its feedforward layers.

● Instead, it should rely on what the external retrieved memory says.

How to fix this problem?

Who do you meet at
the gates of heaven?

Reader

retrieved memory

parametric
memory

"... guarded by Saint Peter"

"Saint Peter"

Saint Peter

● In this case, parametric and retrieved are both right, so model can choose
to use either one.

● We need examples where parametric is wrong, retrieved is right.

How to fix this problem?

Who do you meet at
the gates of heaven?

Reader

retrieved memory

parametric
memory

"... guarded by Saint Peter
the United Nations"

"Saint Peter"

Saint Peter

● Modify the retrieved memory so that it no longer agrees with the parametric
memory.

● Then, they change the gold answer to match the retrieved memory.

● Model learns that it cannot trust its parametric memory!

● "Data augmentation using counterfactual memories"

How to fix this problem?

Who do you meet at
the gates of heaven?

Reader

retrieved memory

parametric
memory

"... guarded by Saint Peter
the United Nations"

"Saint Peter"
Saint Peter

United Nations

M = old / (old + new)
% of the time where model incorrectly reverts to original answer.
(ignoring cases where it produces neither old nor new answer)

Does it work?

Open challenges

● Underutilization: model ignores retrieved memories.

● Overreliance: model depends too much on memories!

Query: "What year was the Eiffel Tower built?"
Answer: 1889

● Typical memory: "... work on the Eiffel Tower
was completed in 1889."

○ Not too much word overlap.
○ Reader learns that "completed" means "built"

● "Too easy" memory: "The Eiffel Tower was built
in the year 1889."

○ Heavy word overlap.
○ Model does not learn to paraphrase.

● Challenging memory: "Paris's tallest tower
finished the same year Van Gogh painted The
Starry Night".

○ Answer doesn't even directly appear -- requires
inferences about other events.

Sometimes your memories are "too easy"
If all your training
memories are like this,
Reader never learns to
handle paraphrase.

If all your training
memories are like this,
Reader can't figure it out,
and may revert back to
its parametric memory.

Possible fix: at train time,
filter out some %
memories that have high
lexical overlap.

Main takeaways

● Getting your model to use memory is not hard
○ Text fusion: Pass it as another text input
○ Label smearing: If each memory comes with a label, just copy the label

● But getting your model to use memory correctly is harder
○ Underutilization: if the model's parametric memory is strong, it may prefer that over your

external memory.

○ Overreliance: if your memories are "too easy", it spoils the Reader: reader never learns to
read deeply.

The end

● How do language models currently represent knowledge?

● What makes a good knowledge representation?

● How can we build better representations? → Memory-augmented models

This talk

