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Lecture Plan

1. Intro to CNNs (25 mins)
2. Simple CNN for Sentence Classification: Yoon (2014) (15 mins)

3. CNN potpourri (5 mins)
4. Deep CNN for Sentence Classification: Conneau et al. (2017) (10 mins)
5. Tree Recursive Neural Nets, briefly (15 mins)
6. Recursive Neural Tensor Networks and Sentiment Analysis (15 mins)

Announcements
• The Project Milestone is due today – we hope you’ve made a good start on projects!
• Next Tuesday is our last invited speaker in person: Jared Kaplan on “scaling laws”
• Final project poster session: Mon Mar 14, 12:30–4:30pm: You should be there*

• Groundbreaking research! Prizes! Food! Company visitors/sponsors!
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1. From RNNs to Convolutional Neural Nets 

• Recurrent neural nets cannot capture phrases without prefix context
• Often capture too much of last words in final vector

• E.g., softmax for word prediction is usually calculated based on the last step

Monáe walked      into         the      ceremony
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From RNNs to Convolutional Neural Nets 

• Main Convolutional Neural Net (CNN/ConvNet) idea: 
• What if we compute vectors for every possible word subsequence of a certain 

length?

• Example: “tentative deal reached to keep government open” computes vectors for:
• tentative deal reached, deal reached to, reached to keep, to keep government, keep 

government open

• Regardless of whether phrase is grammatical
• Not very linguistically or cognitively plausible

• Then group them afterwards (more soon)
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What is a convolution anyway?

• 1d discrete convolution generally:

• Convolution is classically used to extract features from images
• Models position-invariant identification
• Go to cs231n!

• 2d example à
• Yellow color and red numbers

show filter (=kernel) weights
• Green shows input
• Pink shows output

From Stanford UFLDL wiki
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tentative 0.2 0.1 −0.3 0.4

deal 0.5 0.2 −0.3 −0.1

reached −0.1 −0.3 −0.2 0.4

to 0.3 −0.3 0.1 0.1

keep 0.2 −0.3 0.4 0.2

government 0.1 0.2 −0.1 −0.1

open −0.4 −0.4 0.2 0.3
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A 1D convolution for text

Apply a filter (or kernel) of size 3

t,d,r −1.0

d,r,t −0.5

r,t,k −3.6

t,k,g −0.2

k,g,o 0.3

3 1 2 −3

−1 2 1 −3

1 1 −1 1

+ bias

➔ non-linearity 

0.0 0.50

0.5 0.38

-2.6 0.93

0.8 0.31

1.3 0.21



∅ 0.0 0.0 0.0 0.0

tentative 0.2 0.1 −0.3 0.4

deal 0.5 0.2 −0.3 −0.1

reached −0.1 −0.3 −0.2 0.4

to 0.3 −0.3 0.1 0.1

keep 0.2 −0.3 0.4 0.2

government 0.1 0.2 −0.1 −0.1

open −0.4 −0.4 0.2 0.3

∅ 0.0 0.0 0.0 0.0
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1D convolution for text with padding

Apply a filter (or kernel) of size 3

∅,t,d −0.6

t,d,r −1.0

d,r,t −0.5

r,t,k −3.6

t,k,g −0.2

k,g,o 0.3

g,o,∅ −0.5

3 1 2 −3

−1 2 1 −3

1 1 −1 1



∅ 0.0 0.0 0.0 0.0

tentative 0.2 0.1 −0.3 0.4

deal 0.5 0.2 −0.3 −0.1

reached −0.1 −0.3 −0.2 0.4

to 0.3 −0.3 0.1 0.1

keep 0.2 −0.3 0.4 0.2

government 0.1 0.2 −0.1 −0.1

open −0.4 −0.4 0.2 0.3

∅ 0.0 0.0 0.0 0.0
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3 channel 1D convolution with padding = 1 and 3 filters

Apply 3 filters of size 3

∅,t,d −0.6 0.2 1.4

t,d,r −1.0 1.6 −1.0

d,r,t −0.5 −0.1 0.8

r,t,k −3.6 0.3 0.3

t,k,g −0.2 0.1 1.2

k,g,o 0.3 0.6 0.9

g,o,∅ −0.5 −0.9 0.1

Could also use (zero)
padding = 2
Also called “wide convolution”

3 1 2 −3

−1 2 1 −3

1 1 −1 1

1 0 0 1

1 0 −1 −1

0 1 0 1

1 −1 2 −1

1 0 −1 3

0 2 2 1



∅ 0.0 0.0 0.0 0.0

tentative 0.2 0.1 −0.3 0.4

deal 0.5 0.2 −0.3 −0.1

reached −0.1 −0.3 −0.2 0.4

to 0.3 −0.3 0.1 0.1

keep 0.2 −0.3 0.4 0.2

government 0.1 0.2 −0.1 −0.1

open −0.4 −0.4 0.2 0.3

∅ 0.0 0.0 0.0 0.0
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conv1d, padded with max pooling over time

Apply 3 filters of size 3

∅,t,d −0.6 0.2 1.4

t,d,r −1.0 1.6 −1.0

d,r,t −0.5 −0.1 0.8

r,t,k −3.6 0.3 0.3

t,k,g −0.2 0.1 1.2

k,g,o 0.3 0.6 0.9

g,o,∅ −0.5 −0.9 0.1

3 1 2 −3

−1 2 1 −3

1 1 −1 1

1 0 0 1

1 0 −1 −1

0 1 0 1

1 −1 2 −1

1 0 −1 3

0 2 2 1

max p 0.3 1.6 1.4



∅ 0.0 0.0 0.0 0.0

tentative 0.2 0.1 −0.3 0.4

deal 0.5 0.2 −0.3 −0.1

reached −0.1 −0.3 −0.2 0.4

to 0.3 −0.3 0.1 0.1

keep 0.2 −0.3 0.4 0.2

government 0.1 0.2 −0.1 −0.1

open −0.4 −0.4 0.2 0.3

∅ 0.0 0.0 0.0 0.0
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conv1d, padded with ave pooling over time

Apply 3 filters of size 3

∅,t,d −0.6 0.2 1.4

t,d,r −1.0 1.6 −1.0

d,r,t −0.5 −0.1 0.8

r,t,k −3.6 0.3 0.3

t,k,g −0.2 0.1 1.2

k,g,o 0.3 0.6 0.9

g,o,∅ −0.5 −0.9 0.1

3 1 2 −3

−1 2 1 −3

1 1 −1 1

1 0 0 1

1 0 −1 −1

0 1 0 1

1 −1 2 −1

1 0 −1 3

0 2 2 1

ave p −0.87 0.26 0.53



In PyTorch

batch_size = 16
word_embed_size = 4
seq_len = 7
input = torch.randn(batch_size, word_embed_size, seq_len)
conv1 = Conv1d(in_channels=word_embed_size, out_channels=3,

kernel_size=3)  # can add: padding=1
hidden1 = conv1(input)
hidden2 = torch.max(hidden1, dim=2)  # max pool
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∅ 0.0 0.0 0.0 0.0

tentative 0.2 0.1 −0.3 0.4

deal 0.5 0.2 −0.3 −0.1

reached −0.1 −0.3 −0.2 0.4

to 0.3 −0.3 0.1 0.1

keep 0.2 −0.3 0.4 0.2

government 0.1 0.2 −0.1 −0.1

open −0.4 −0.4 0.2 0.3

∅ 0.0 0.0 0.0 0.0
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Other (maybe less useful) notions: stride = 2

Apply 3 filters of size 3

∅,t,d −0.6 0.2 1.4

d,r,t −0.5 −0.1 0.8

t,k,g −0.2 0.1 1.2

g,o,∅ −0.5 −0.9 0.1

3 1 2 −3

−1 2 1 −3

1 1 −1 1

1 0 0 1

1 0 −1 −1

0 1 0 1

1 −1 2 −1

1 0 −1 3

0 2 2 1



∅ 0.0 0.0 0.0 0.0

tentative 0.2 0.1 −0.3 0.4

deal 0.5 0.2 −0.3 −0.1

reached −0.1 −0.3 −0.2 0.4

to 0.3 −0.3 0.1 0.1

keep 0.2 −0.3 0.4 0.2

government 0.1 0.2 −0.1 −0.1

open −0.4 −0.4 0.2 0.3

∅ 0.0 0.0 0.0 0.0

Local max pool, stride = 2

Apply 3 filters of size 3

∅,t,d −0.6 0.2 1.4

t,d,r −1.0 1.6 −1.0

d,r,t −0.5 −0.1 0.8

r,t,k −3.6 0.3 0.3

t,k,g −0.2 0.1 1.2

k,g,o 0.3 0.6 0.9

g,o,∅ −0.5 −0.9 0.1

∅ −Inf −Inf −Inf

3 1 2 −3

−1 2 1 −3

1 1 −1 1

1 0 0 1

1 0 −1 −1

0 1 0 1

1 −1 2 −1

1 0 −1 3

0 2 2 1

∅,t,d,r −0.6 1.6 1.4

d,r,t,k −0.5 0.3 0.8

t,k,g,o 0.3 0.6 1.2

g,o,∅,∅ −0.5 −0.9 0.1



∅ 0.0 0.0 0.0 0.0

tentative 0.2 0.1 −0.3 0.4

deal 0.5 0.2 −0.3 −0.1

reached −0.1 −0.3 −0.2 0.4

to 0.3 −0.3 0.1 0.1

keep 0.2 −0.3 0.4 0.2

government 0.1 0.2 −0.1 −0.1

open −0.4 −0.4 0.2 0.3

∅ 0.0 0.0 0.0 0.0
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conv1d, k-max pooling over time, k = 2

Apply 3 filters of size 3

∅,t,d −0.6 0.2 1.4

t,d,r −1.0 1.6 −1.0

d,r,t −0.5 −0.1 0.8

r,t,k −3.6 0.3 0.3

t,k,g −0.2 0.1 1.2

k,g,o 0.3 0.6 0.9

g,o,∅ −0.5 −0.9 0.1

3 1 2 −3

−1 2 1 −3

1 1 −1 1

1 0 0 1

1 0 −1 −1

0 1 0 1

1 −1 2 −1

1 0 −1 3

0 2 2 1

2-max p 0.3 1.6 1.4

−0.2 0.6 1.2



∅ 0.0 0.0 0.0 0.0

tentative 0.2 0.1 −0.3 0.4

deal 0.5 0.2 −0.3 −0.1

reached −0.1 −0.3 −0.2 0.4

to 0.3 −0.3 0.1 0.1

keep 0.2 −0.3 0.4 0.2

government 0.1 0.2 −0.1 −0.1

open −0.4 −0.4 0.2 0.3

∅ 0.0 0.0 0.0 0.0

Other somewhat useful notions: dilation = 2

Apply 3 filters of size 3

∅,t,d −0.6 0.2 1.4

t,d,r −1.0 1.6 −1.0

d,r,t −0.5 −0.1 0.8

r,t,k −3.6 0.3 0.3

t,k,g −0.2 0.1 1.2

k,g,o 0.3 0.6 0.9

g,o,∅ −0.5 −0.9 0.1

3 1 2 −3

−1 2 1 −3

1 1 −1 1

1 0 0 1

1 0 −1 −1

0 1 0 1

1 −1 2 −1

1 0 −1 3

0 2 2 1

1,3,5 0.3 0.0

2,4,6

3,5,7

2 3 1

1 −1 −1

3 1 0

1 3 1

1 −1 −1

3 1 −1



2. Single Layer CNN for Sentence Classification

• Yoon Kim (2014): Convolutional Neural Networks for Sentence 
Classification. EMNLP 2014. https://arxiv.org/pdf/1408.5882.pdf

• Goal: Sentence classification:
• Mainly positive or negative sentiment of a sentence
• Other  tasks like:
• Subjective or objective language sentence
• Question classification: about person, location, number, …
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Single Layer CNN for Sentence Classification

• A simple use of one convolutional layer and pooling 
• Word vectors:  𝐱" ∈ ℝ#

• Sentence: 𝐱$:& = 𝐱$⊕𝑥'⊕⋯⊕𝐱& (vectors concatenated)

• Concatenation of words in range: 𝐱":"() (symmetric more common)

• Convolutional filter: 𝐰 ∈ ℝ*# (over window of h words)

• Note, filter is a vector
• Filter could be of size 2, 3, or 4 words:

the           country       of           my         birth
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3.6
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7
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2.1
3.3

1.1
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Single layer CNN

• Filter w is applied to all possible windows (concatenated vectors)
• To compute feature (one channel) for CNN layer:

• Sentence:
• All possible windows of length h:
• Result is a feature map: 

wait 
for 
the 

video 
and 
do 
n't 

rent 
it 

n x k representation of 
sentence with static and 

non-static channels 

Convolutional layer with 
multiple filter widths and 

feature maps 

Max-over-time 
pooling 

Fully connected layer 
with dropout and  
softmax output 

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one
feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m
filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ŵ = pw, and
ŵ is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s
whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

Figure 1: Model architecture with two channels for an example sentence.
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ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one
feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
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0.4
0.3

2.3
3.6

4
4.5

7
7

2.1
3.3

1.1 3.5 2.4

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one
feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m
filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ŵ = pw, and
ŵ is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s
whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747
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Pooling and channels

• Pooling: max-over-time pooling layer
• Idea: capture most important activation (maximum over time)
• From feature map
• Pooled single number:

• Use multiple filter weights w (i.e., multiple channels)
• Useful to have different window sizes h
• Because of max pooling                        , length of c can be variable

• So, we can have some filters that look at unigrams, bigrams, tri-grams, 4-grams, etc.
• Even without padding

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one
feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m
filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ŵ = pw, and
ŵ is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s
whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.
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A pitfall when fine-tuning word vectors

20

• Setting: We are training a model for movie review sentiment building on word vectors 
• In the training data we have “tedious”, “dull”; in the testing data we have “plodding”
• The pre-trained word vectors have all three similar:
• Question: What happens when we update the word vectors?
• Answer: Words in the training data move around; other words stay where they were

tedious
dull

plodding

dull

tedious

plodding

This can be bad!



Channel doubling multi-channel input idea

• Initialize model with pre-trained word vectors (e.g., word2vec or Glove)

• Start with two copies

• Backprop into only one set, keep other “static”
• Fine-tuning should be useful for improving word vectors for task
• But there is a problem that words in pre-training (and maybe runtime data) but not 

in training data will not move. So, it also makes sense to leave all word vectors 
where they are and to only update the parameters above the word vectors

• Having two copies is an attempt to get the best of both worlds

• Both channel sets are added to ci before max-pooling
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Classification after one CNN layer

• First one convolution, followed by one max-pooling
• To obtain final feature vector:

(assuming m filters w)
• Used 100 feature maps each of sizes 3, 4, 5

• Simple final softmax layer 

Figure 1: Model architecture with two channels for an example sentence.
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Kim (2014)
From:
Zhang and Wallace 
(2015) A Sensitivity 
Analysis of (and 
Practitioners’ Guide 
to) Convolutional 
Neural Networks for 
Sentence 
Classification
https://arxiv.org/pdf/
1510.03820.pdf
(follow on paper, not 
famous, but a nice picture)
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All hyperparameters in Kim (2014)

• Find hyperparameters based on dev set
• Nonlinearity: ReLU
• Window filter sizes h = 3, 4, 5
• Each filter size has 100 feature maps
• Dropout p = 0.5

• Kim (2014) reports 2–4% accuracy improvement from dropout
• L2 constraint s for rows of softmax, s = 3
• Mini batch size for SGD training: 50
• Word vectors: pre-trained with word2vec, k = 300

• During training, keep checking performance on dev set and pick 
highest accuracy weights for final evaluation
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Experiments on text classification

Model MR SST-1 SST-2 Subj TREC CR MPQA
CNN-rand 76.1 45.0 82.7 89.6 91.2 79.8 83.4
CNN-static 81.0 45.5 86.8 93.0 92.8 84.7 89.6
CNN-non-static 81.5 48.0 87.2 93.4 93.6 84.3 89.5
CNN-multichannel 81.1 47.4 88.1 93.2 92.2 85.0 89.4
RAE (Socher et al., 2011) 77.7 43.2 82.4 � � � 86.4
MV-RNN (Socher et al., 2012) 79.0 44.4 82.9 � � � �
RNTN (Socher et al., 2013) � 45.7 85.4 � � � �
DCNN (Kalchbrenner et al., 2014) � 48.5 86.8 � 93.0 � �
Paragraph-Vec (Le and Mikolov, 2014) � 48.7 87.8 � � � �
CCAE (Hermann and Blunsom, 2013) 77.8 � � � � � 87.2
Sent-Parser (Dong et al., 2014) 79.5 � � � � � 86.3
NBSVM (Wang and Manning, 2012) 79.4 � � 93.2 � 81.8 86.3
MNB (Wang and Manning, 2012) 79.0 � � 93.6 � 80.0 86.3
G-Dropout (Wang and Manning, 2013) 79.0 � � 93.4 � 82.1 86.1
F-Dropout (Wang and Manning, 2013) 79.1 � � 93.6 � 81.9 86.3
Tree-CRF (Nakagawa et al., 2010) 77.3 � � � � 81.4 86.1
CRF-PR (Yang and Cardie, 2014) � � � � � 82.7 �
SVMS (Silva et al., 2011) � � � � 95.0 � �

Table 2: Results of our CNN models against other methods. RAE: Recursive Autoencoders with pre-trained word vectors from
Wikipedia (Socher et al., 2011). MV-RNN: Matrix-Vector Recursive Neural Network with parse trees (Socher et al., 2012).
RNTN: Recursive Neural Tensor Network with tensor-based feature function and parse trees (Socher et al., 2013). DCNN:
Dynamic Convolutional Neural Network with k-max pooling (Kalchbrenner et al., 2014). Paragraph-Vec: Logistic regres-
sion on top of paragraph vectors (Le and Mikolov, 2014). CCAE: Combinatorial Category Autoencoders with combinatorial
category grammar operators (Hermann and Blunsom, 2013). Sent-Parser: Sentiment analysis-specific parser (Dong et al.,
2014). NBSVM, MNB: Naive Bayes SVM and Multinomial Naive Bayes with uni-bigrams from Wang and Manning (2012).
G-Dropout, F-Dropout: Gaussian Dropout and Fast Dropout from Wang and Manning (2013). Tree-CRF: Dependency tree
with Conditional Random Fields (Nakagawa et al., 2010). CRF-PR: Conditional Random Fields with Posterior Regularization
(Yang and Cardie, 2014). SVMS : SVM with uni-bi-trigrams, wh word, head word, POS, parser, hypernyms, and 60 hand-coded
rules as features from Silva et al. (2011).

to both channels, but gradients are back-
propagated only through one of the chan-
nels. Hence the model is able to fine-tune
one set of vectors while keeping the other
static. Both channels are initialized with
word2vec.

In order to disentangle the effect of the above
variations versus other random factors, we elim-
inate other sources of randomness—CV-fold as-
signment, initialization of unknown word vec-
tors, initialization of CNN parameters—by keep-
ing them uniform within each dataset.

4 Results and Discussion

Results of our models against other methods are
listed in table 2. Our baseline model with all ran-
domly initialized words (CNN-rand) does not per-
form well on its own. While we had expected per-
formance gains through the use of pre-trained vec-
tors, we were surprised at the magnitude of the
gains. Even a simple model with static vectors
(CNN-static) performs remarkably well, giving

competitive results against the more sophisticated
deep learning models that utilize complex pool-
ing schemes (Kalchbrenner et al., 2014) or require
parse trees to be computed beforehand (Socher
et al., 2013). These results suggest that the pre-
trained vectors are good, ‘universal’ feature ex-
tractors and can be utilized across datasets. Fine-
tuning the pre-trained vectors for each task gives
still further improvements (CNN-non-static).

4.1 Multichannel vs. Single Channel Models
We had initially hoped that the multichannel ar-
chitecture would prevent overfitting (by ensuring
that the learned vectors do not deviate too far
from the original values) and thus work better than
the single channel model, especially on smaller
datasets. The results, however, are mixed, and fur-
ther work on regularizing the fine-tuning process
is warranted. For instance, instead of using an
additional channel for the non-static portion, one
could maintain a single channel but employ extra
dimensions that are allowed to be modified during
training.
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Problem with comparison?

• Dropout gives 2–4 % accuracy improvement
• But several compared-to systems didn’t use dropout and would possibly gain equally 

from it

• Still seen as remarkable results from a simple architecture!

• Differences from window architecture we described in an early lecture:
• Many filters and pooling
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3. Model comparison: Our growing toolkit

• Bag of Vectors: Surprisingly good baseline for simple classification problems. 
• Especially if followed by a few ReLU layers! (See paper: Deep Averaging Networks)

• Window Model: Good for single word classification for problems that do not need wide 
context. E.g., POS, NER

• CNNs: good for classification, need zero padding for shorter phrases, somewhat 
implausible/hard to interpret, easy to parallelize on GPUs. Efficient and versatile

• Recurrent Neural Networks: Cognitively plausible (reading from left to right), not best 
for classification (if just use last state), much slower than CNNs, good for sequence 
tagging and classification, good for language models, can be amazing with attention

• Transformers: Great for language models, great for sentence calculations. In general, 
still the best thing since sliced bread. 
• But, FWIW, recent Vision Transformer work argues that CNNs and transformers have 

complementary advantages, and you can usefully use both
27



Batch Normalization (BatchNorm)

28

[Ioffe and Szegedy. 2015. Batch normalization: Accelerating deep network training by reducing 
internal covariate shift. arXiv:1502.03167.]
• Often used in CNNs
• Transform the convolution output of a batch by scaling the activations to have zero 

mean and unit variance
• This is the familiar Z-transform of statistics
• But updated per batch so fluctuations don’t affect things much

• Use of BatchNorm makes models much less sensitive to parameter initialization, since 
outputs are automatically rescaled
• It also tends to make tuning of learning rates simpler

• PyTorch: nn.BatchNorm1d

• Related but different: LayerNorm, which is standard in Transformers



Size 1 Convolutions

[Lin, Chen, and Yan. 2013. Network in network. arXiv:1312.4400.]
• Does this concept make sense?!? Yes.
• Size 1 convolutions (“1x1”), a.k.a. Network-in-network (NiN) connections, are 

convolutional kernels with kernel_size=1
• A size 1 convolution gives you a fully connected linear layer across channels!
• It can be used to map from many channels to fewer channels
• Size 1 convolutions add additional neural network layers with very few additional 

parameters
• Unlike Fully Connected (FC) layer across data item which adds a lot of parameters
• This is similar to the per-position feed-forward layers in transformers
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4. Very Deep Convolutional Networks for Text Classification 

• Conneau, Schwenk, Lecun, Barrault. EACL 2017.
• Starting point: sequence models (LSTMs) had been very dominant in NLP

• Also CNNs, Attention, etc., but all the models were basically not very deep – not like 
the deep models in Vision

• What happens when we build a vision-like system for NLP?
• Model works up from the character level

• Desire for “NLP from scratch” [raw signal]
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VD-CNN architecture
The system very much looks like a 
vision system in its design, similar to
VGGnet or ResNet

It looks unlike most typical Deep 
Learning NLP systems

31

s = 1024 chars; 16d embed

Local pooling at each 
stage halves temporal 
resolution and 
doubles number of 
features

Result is constant size, 
since text is truncated 
or padded



Convolutional block in VD-CNN

• Each convolutional block is 
two convolutional layers, each 
followed by batch norm and a 
ReLU nonlinearity

• Convolutions of size 3
• Pad to preserve (or halve 

when local pooling) dimension
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• Use large text classification datasets
• Much bigger than the small datasets used in the Yoon Kim (2014) paper
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5.
TreeRNNs:
Recursion 
in human 
language



Are languages recursive?

• Cognitively somewhat debatable (need to head to infinity)
• But: recursion structure is natural/right for describing language

• [The person standing next to [the man from [the company that 
purchased [the firm that you used to work at]]]]

• noun phrase containing a noun phrase containing a noun phrase
• It’s a very powerful prior for language structure
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Penn Treebank tree
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How should we map phrases into a vector space?

the           country       of           my         birth
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5.5
6.1
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1
5

Use principle of compositionality
The meaning (vector) of a phrase or 
sentence is determined by 
(1) the meanings of its words and
(2) the rules that combine them.
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the place where I was born
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Socher, Manning, and Ng. ICML, 2011
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Constituency Sentence Parsing: What we want

9
1

5
3

8
5

9
1

4
3

NP NP

PP

S

7
1

VP

The                cat              sat              on              the               mat
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Learn Structure and Representation
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Models in this section 
can jointly learn parse 
trees and compositional 
vector representations



Recursive vs. recurrent neural networks

• Recursive neural nets provide
representations for linguistic
phrases

• But they require a tree structure

• Recurrent neural nets
cannot capture phrases
without prefix context

• They often capture too much
of last words in “phrase” vector
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Recursive Neural Networks for Structure Prediction

on               the               mat

9
1

4
3

3
3

8
3

8
5

3
3

Neural 
Network

8
31.3

Inputs: two candidate children’s representations
Outputs:
1. The semantic representation if the two nodes are merged.
2. Score of how plausible the new node would be.
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Simple Tree Recursive Neural Network Definition

score  =  UTp

p =  tanh(W + b),

Same W parameters at all nodes 
of the tree
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Neural 
Network

8
31.3score  = = parent

c1 c2

c1
c2
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Parsing a sentence with an RNN (greedily)
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Parsing a sentence
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Parsing a sentence
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Parsing a sentence
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• The score of a tree is computed 
by the sum of the parsing 
decision scores at each node: 

• x is sentence; y is parse tree
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Discussion: Simple TreeRNN

48

• We got some decent results with a single layer TreeRNN like this!
• [Socher, Manning, and Ng. ICML, 2011] got a best paper award!

• A single weight matrix TreeRNN could capture some things but not more 
complex, higher order composition and parsing long sentences

• There is no real interaction between the input words

• And the composition function is the same 
for all syntactic categories, punctuation, etc.

W

c1 c2

p
Wscore s



6. Recursive Neural Tensor Networks

• Allows two word or phrase vectors to interact multiplicatively

• Not today, but see also Tai, Socher, Manning [2015]: TreeLSTMs
• Work even better

Socher, Perelygin, Wu, Chuang, Manning, Ng, and Potts 2013



Beyond the bag of words: Sentiment detection

Is the tone of a piece of text positive, negative, or neutral?

• Sentiment is that sentiment is “easy”
• Detection accuracy for longer documents ~90%, BUT

… … loved … … … … … great … … … … … … impressed … … … … … … 
marvelous … … … …



Stanford Sentiment Treebank

• 215,154 phrases labeled in 11,855 sentences
• Can actually train and test compositions

http://nlp.stanford.edu:8080/sentiment/



Better Dataset Helped All Models

• Hard negation cases are still mostly incorrect
• We also need a more powerful model!
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Recursive Neural Tensor Network

Idea: Allow both additive and mediated
multiplicative interactions of vectors



Recursive Neural Tensor Network



Recursive Neural Tensor Network



Recursive Neural Tensor Network

• Use resulting vectors in tree as input to 
a classifier like logistic regression

• Train all weights jointly with gradient descent



Positive/Negative Results on Treebank
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Classifying Sentences: Accuracy improves to 85.4



Experimental Results on Treebank
• RNTN can capture constructions like X but Y
• RNTN accuracy of 72%, compared to MV-RNN (65%), 

biword NB (58%) and RNN (54%)



Negation Results
When negating negatives, positive activation should 
increase!

Demo: http://nlp.stanford.edu:8080/sentiment/
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