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Announcements

This has been a difficult last two years – and hard on many people’s
mental health
• Do all take care of yourselves!!! And get some sleep!

Especially as it’s now end-of-quarter crunch time …

• Final project milestones: Thank you! Lots of interesting stuff!
• We’ll get them back to you tomorrow!
• Do keep working on your final projects!
• Do stay in touch with your mentor(s) and/or other course staff!

• Good luck with your final projects!
• The finish line is in sight! See you at the poster session!!!
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Lecture Plan:

Lecture 16: Coreference Resolution
1. What is Coreference Resolution? (10 mins)
2. Applications of coreference resolution (5 mins)
3. Mention Detection  (5 mins)
4. Some Linguistics: Types of Reference (5 mins)
Three Kinds of Coreference Resolution Models
5. Rule-based (Hobbs Algorithm) (10 mins)
6. Mention-pair and mention-ranking models (15 mins)
7. Current state-of-the-art neural coreference systems (10 mins)
8. Evaluation and current results (10 mins)

3



1. What is Coreference Resolution?
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• Identify all mentions that refer to the same entity in the word



A couple of years later, Vanaja met Akhila at the local park. 

Akhila’s son Prajwal was just two months younger than her son 

Akash, and they went to the same school. For the pre-school 

play, Prajwal was chosen for the lead role of the naughty child 

Lord Krishna. Akash was to be a tree. She resigned herself to 

make Akash the best tree that anybody had ever seen. She 

bought him a brown T-shirt and brown trousers to represent the 

tree trunk. Then she made a large cardboard cutout of a tree’s 

foliage, with a circular opening in the middle for Akash’s face. 

She attached red balls to it to represent fruits. It truly was the 

nicest tree. From The Star by Shruthi Rao, with some shortening.



Applications
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• Full text understanding
• information extraction, question answering, summarization, …
• “He was born in 1961”          (Who?)



Applications
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• Full text understanding
• Machine translation 

• languages have different features for gender, number, 
dropped pronouns, etc.



Applications
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• Full text understanding
• Machine translation
• Dialogue Systems

“Book tickets to see James Bond”
“Spectre is playing near you at 2:00 and 3:00 today. How many  
tickets would you like?”
“Two tickets for the showing at three”



Coreference Resolution in Two Steps
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1. Detect the mentions (easy)

2. Cluster the mentions (hard)

“[I] voted for [Nader] because [he] was most aligned with    
[[my] values],” [she] said
• mentions can be nested!

“[I] voted for [Nader] because [he] was most aligned with    
[[my] values],” [she] said



3. Mention Detection
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• Mention: A span of text referring to some entity

• Three kinds of mentions:

1. Pronouns
• I, your, it, she, him, etc.

2. Named entities
• People, places, etc.: Paris, Joe Biden, Nike

3. Noun phrases
• “a dog,” “the big fluffy cat stuck in the tree”



Mention Detection
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• Mention: A span of text referring to some entity

• For detection: traditionally, use a pipeline of other NLP systems

1. Pronouns
• Use a part-of-speech tagger

2. Named entities
• Use a Named Entity Recognition system

3. Noun phrases
• Use a parser (especially a constituency parser!)



Mention Detection: Not Quite So Simple
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• Marking all pronouns, named entities, and NPs as mentions 
over-generates mentions

• Are these mentions?
• It is sunny
• The best donut in the world 
• 100 miles



How to deal with these bad mentions?
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• Could train a classifier to filter out spurious mentions

• Much more common: keep all mentions as “candidate 
mentions”
• After your coreference system is done running discard all 

singleton mentions (i.e., ones that have not been marked as 
coreference with anything else)
• But you might well want to know about referential singletons!



Avoiding a traditional pipeline system
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• We could instead train a classifier specifically for mention 
detection instead of using a POS tagger, NER system, and parser.

• Or we can not even try to do mention detection explicitly:
• We can build a model that begins with all spans and jointly 

does mention-detection and coreference resolution end-to-
end in one model 
• Will cover later in this lecture!



4. On to Coreference! First, some linguistics

15

• Coreference is when two mentions refer to the same entity in 
the world
• Barack Obama traveled to … Obama ...

• A different-but-related linguistic concept is anaphora: when a 
term (anaphor) refers to another term (antecedent)
• the interpretation of the anaphor is in some way determined 

by the interpretation of the antecedent
• Barack Obama said he would sign the bill. 

anaphorantecedent



Coreference with named entities 

Anaphora
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Anaphora vs. Coreference

text

world

Barack Obama he

Barack Obama Obamatext

world



Not all anaphoric relations  are coreferential

• Not all noun phrases have reference

• Every dancer twisted her knee.
• No dancer twisted her knee.

• There are three NPs in each of these sentences; because the first one is 
non-referential (or a group), the other two aren’t either. 



Anaphora vs. Coreference
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• Not all anaphoric relations are coreferential

We went to see a concert last night. The tickets were really expensive.

• This is referred to as bridging anaphora.

bridging 
anaphora

Barack Obama … 
Obama ...

pronominal 
anaphora

coreference anaphora

bound 
pronouns 
(quantifiers)

“the 
argument”



Anaphora vs. Cataphora
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• Usually, the antecedent comes before the anaphor (e.g., a pronoun), but not always
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Cataphora

“From the corner of the divan of Persian saddle-
bags on which he was lying, smoking, as was his
custom, innumerable cigarettes, Lord Henry 
Wotton could just catch the gleam of the honey-
sweet and honey-coloured blossoms of a 
laburnum…” 

(Oscar Wilde – The Picture of Dorian Gray)



Taking stock …

• It’s often said that language is interpreted “in context”
• We’ve seen some examples, like word-sense disambiguation:

• I took money out of the bank vs. The boat disembarked from the bank

• Coreference is another key example of this:
• Obama was the president of the U.S. from 2008 to 2016. He was born in Hawaii.

• As we progress through an article, or dialogue, or webpage, we build up a (potentially 
very complex) discourse model, and we interpret new sentences/utterances with 
respect to our model of what’s come before.

• Coreference and anaphora are all we see in this class of whole-discourse meaning
• But it’s a big part of human language understanding!
• There’s more in CS224U next quarter!

21



Three Coreference Models
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• Rule-based (pronominal anaphora resolution)
• Mention Pair/Mention Ranking
• End-to-end neural coreference



5. Traditional pronominal anaphora resolution: 
Hobbs’ naive algorithm
1. Begin at the NP immediately dominating the pronoun
2. Go up tree to first NP or S.  Call this X, and the path p.
3. Traverse all branches below X to the left of p, left-to-right, breadth-first.  Propose as 

antecedent any NP that has a NP or S between it and X
4. If X is the highest S in the sentence, traverse the parse trees of the previous sentences 

in the order of recency.  Traverse each tree left-to-right, breadth first.  When an NP is 
encountered, propose as antecedent.  If X not the highest node, go to step 5.



Hobbs’ naive algorithm (1976) 
5. From node X, go up the tree to the first NP or S.  Call it X, and the path p.
6. If X is an NP and the path p to X came from a non-head phrase of X (a specifier or adjunct, 

such as a possessive, PP, apposition, or relative clause), propose X as antecedent
(The original said “did not pass through the N’ that X immediately dominates”, but 
the Penn Treebank grammar lacks N’ nodes….)

7. Traverse all branches below X to the left of the path, in a left-to-right, breadth first 
manner.  Propose any NP encountered as the antecedent

8. If X is an S node, traverse all branches of X to the right of the path  but do not go 
below any NP or S encountered.  Propose any NP as the antecedent.

9. Go to step 4

Until deep learning still often used as a feature in ML systems!



Hobbs Algorithm Example

1. Begin at the NP immediately dominating the pronoun
2. Go up tree to first NP or S.  Call this X, and the path p.
3. Traverse all branches below X to the left of p, left-to-right, breadth-first.  

Propose as antecedent any NP that has a NP or S between it and X
4. If X is the highest S in the sentence, traverse the parse trees of the 

previous sentences in the order of recency.  Traverse each tree left-to-
right, breadth first.  When an NP is encountered, propose as 
antecedent.  If X not the highest node, go to step 5.

5. From node X, go up the tree to the first NP or S.  Call it X, and the path p.
6. If X is an NP and the path p to X came from a non-head phrase of X (a 

specifier or adjunct, such as a possessive, PP, apposition, or relative 
clause), propose X as antecedent

7. Traverse all branches below X to the left of the path, in a left-to-right, 
breadth first manner.  Propose any NP encountered as the antecedent

8. If X is an S node, traverse all branches of X to the right of the path  but do 
not go below any NP or S encountered.  Propose any NP as the 
antecedent.

9. Go to step 4



Knowledge-based Pronominal Coreference

• She poured water from the pitcher into the cup until it was full.
• She poured water from the pitcher into the cup until it was empty.

• The city council refused the women a permit because they feared violence.
• The city council refused the women a permit because they advocated violence. 

• Winograd (1972)

• These are called Winograd Schema
• Recently proposed as an alternative to the Turing test

• See: Hector J. Levesque “On our best behaviour” IJCAI 2013 
http://www.cs.toronto.edu/~hector/Papers/ijcai-13-paper.pdf

• http://commonsensereasoning.org/winograd.html

• If you’ve fully solved coreference, arguably you’ve solved AI !!!

http://www.cs.toronto.edu/~hector/Papers/ijcai-13-paper.pdf
http://commonsensereasoning.org/winograd.html


Hobbs’ algorithm: commentary

“… the naïve approach is quite good. Computationally 
speaking, it will be a long time before a semantically 
based algorithm is sophisticated enough to perform as 
well, and these results set a very high standard for any 
other approach to aim for.

“Yet there is every reason to pursue a semantically 
based approach.  The naïve algorithm does not work.  
Any one can think of examples where it fails.  In these 
cases, it not only fails; it gives no indication that it has 
failed and offers no help in finding the real antecedent.”

— Hobbs (1978), Lingua, p. 345



6. Coreference Models: Mention Pair
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“I voted for Nader because he was most aligned with my values,” she said.

I Nader he my she

Coreference Cluster 1 
Coreference Cluster 2



• Train a binary classifier that assigns every pair of mentions a 
probability of being coreferent:
• e.g., for “she” look at all candidate antecedents (previously 

occurring mentions) and decide which are coreferent with it

Coreference Models: Mention Pair

29

I Nader he my she

“I voted for Nader because he was most aligned with my values,” she said.

coreferent with she?



Coreference Models: Mention Pair
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I Nader he my

Positive examples: want                     to be near 1

she

“I voted for Nader because he was most aligned with my values,” she said.

• Train a binary classifier that assigns every pair of mentions a 
probability of being coreferent:
• e.g., for “she” look at all candidate antecedents (previously 

occurring mentions) and decide which are coreferent with it



Coreference Models: Mention Pair
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I Nader he my

Negative examples: want                     to be near 0

she

“I voted for Nader because he was most aligned with my values,” she said.

• Train a binary classifier that assigns every pair of mentions a 
probability of being coreferent:
• e.g., for “she” look at all candidate antecedents (previously 

occurring mentions) and decide which are coreferent with it



• N mentions in a document
• yij = 1 if mentions mi and mj are coreferent, -1 if otherwise
• Just train with regular cross-entropy loss (looks a bit different 

because it is binary classification)

Mention Pair Training 

32

Iterate through 
mentions

Iterate through 
candidate antecedents 
(previously occurring 
mentions)

Coreferent mentions pairs 
should get high probability, 
others should get low 
probability



Mention Pair Test Time
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I Nader he my she

• Coreference resolution is a clustering task, but we are only 
scoring pairs of mentions… what to do?



Mention Pair Test Time
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• Coreference resolution is a clustering task, but we are only 
scoring pairs of mentions… what to do?

• Pick some threshold (e.g., 0.5) and add coreference links 
between mention pairs where                     is above the threshold

I Nader he my she

“I voted for Nader because he was most aligned with my values,” she said.



Mention Pair Test Time
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I Nader he my she

“I voted for Nader because he was most aligned with my values,” she said.

Even though the model did not predict this coreference link, 
I and my are coreferent due to transitivity 

• Coreference resolution is a clustering task, but we are only 
scoring pairs of mentions… what to do?

• Pick some threshold (e.g., 0.5) and add coreference links 
between mention pairs where                     is above the threshold

• Take the transitive closure to get the clustering



Mention Pair Test Time
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I Nader he my she

“I voted for Nader because he was most aligned with my values,” she said.

Adding this extra link would merge everything 
into one big coreference cluster!

• Coreference resolution is a clustering task, but we are only 
scoring pairs of mentions… what to do?

• Pick some threshold (e.g., 0.5) and add coreference links 
between mention pairs where                     is above the threshold

• Take the transitive closure to get the clustering



Mention Pair Models: Disadvantage
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• Suppose we have a long document with the following mentions
• Ralph Nader … he … his … him …  <several paragraphs>                                   

… voted for Nader because he …

Ralph 
Nader he his him Nader

almost impossible

he

Relatively easy



Mention Pair Models: Disadvantage
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• Suppose we have a long document with the following mentions
• Ralph Nader … he … his … him …  <several paragraphs>                                   

… voted for Nader because he …

Ralph 
Nader he his him Nader

almost impossible

he

Relatively easy

• Many mentions only have one clear antecedent
• But we are asking the model to predict all of them

• Solution: instead train the model to predict only one antecedent for each mention
• More linguistically plausible



• Assign each mention its highest scoring candidate antecedent 
according to the model

• Dummy NA mention allows model to decline linking the current 
mention to anything (“singleton” or “first” mention)

7. Coreference Models: Mention Ranking

39

NA I Nader he my

best antecedent for she?

she



• Assign each mention its highest scoring candidate antecedent 
according to the model

• Dummy NA mention allows model to decline linking the current 
mention to anything (“singleton” or “first” mention)

Coreference Models: Mention Ranking

40

NA I Nader he my she

Positive examples: model has to assign a high 
probability to either one (but not necessarily both)



• Assign each mention its highest scoring candidate antecedent 
according to the model

• Dummy NA mention allows model to decline linking the current 
mention to anything (“singleton” or “first” mention)

Coreference Models: Mention Ranking
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NA I Nader he my

best antecedent for she?
p(NA, she) = 0.1
p(I, she) = 0.5
p(Nader, she) = 0.1
p(he, she) = 0.1
p(my, she) = 0.2

Apply a softmax over the scores for 
candidate antecedents so  
probabilities sum to 1

she



• Assign each mention its highest scoring candidate antecedent 
according to the model

• Dummy NA mention allows model to decline linking the current 
mention to anything (“singleton” or “first” mention)

Coreference Models: Mention Ranking

42

NA I Nader he my

p(NA, she) = 0.1
p(I, she) = 0.5
p(Nader, she) = 0.1
p(he, she) = 0.1
p(my, she) = 0.2

Apply a softmax over the scores for 
candidate antecedents so  
probabilities sum to 1

she

only add highest scoring 
coreference link



i�1X

j=1

(yij = 1)p(mj ,mi)

J = � log

0

@
NY

i=2

i�1X

j=1

(yij = 1)p(mj ,mi)

1

A

1

• We want the current mention mj to be linked to any one of the 
candidate antecedents it’s coreferent with.

• Mathematically, we want to maximize this probability:

• The model could produce 0.9 probability for one of the correct 
antecedents and low probability for everything else, and the 
sum will still be large

Coreference Models: Training

43

Iterate through 
candidate antecedents 
(previously occurring 
mentions)

For ones that 
are coreferent 
to mj…

…we want the model to 
assign a high probability



How do we compute the probabilities?
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A. Non-neural statistical classifier

B. Simple neural network

C. More advanced model using LSTMs, attention, transformers



A. Non-Neural Coref Model: Features
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• Person/Number/Gender agreement
• Jack gave Mary a gift.  She was excited.

• Semantic compatibility
• … the mining conglomerate … the company …

• Certain syntactic constraints
• John bought him a new car. [him can not be John] 

• More recently mentioned entities preferred for referenced
• John went to a movie. Jack went as well. He was not busy.

• Grammatical Role: Prefer entities in the subject position 
• John went to a movie with Jack. He was not busy. 

• Parallelism: 
• John went with Jack to a movie. Joe went with him to a bar.

• …

A slight change needed 
here for singular they!



B. Neural Coref Model [Clark and Manning 2016]

• Standard feed-forward neural network 
• Input layer: word embeddings and a few categorical features
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Neural Coref Model: Inputs

• Embeddings
• Previous two words, first word, last word, head word, … of each 

mention
• The head word is the “most important” word in the mention – you can find it 

using a parser. e.g., The fluffy cat stuck in the tree 

• Still need some other features to get a strongly performing model:
• Distance
• Document genre
• Speaker information
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7. End-to-end Neural Coref Model
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• Current state-of-the-art models for coreference resolution 
• Kenton Lee et al. from UW (EMNLP 2017) et seq.

• Mention ranking model
• Improvements over simple feed-forward NN

• Use an LSTM (or more)
• Use attention
• Do mention detection and coreference end-to-end
• No mention detection step!
• Instead consider every span of text (up to a certain length) as a candidate mention

• a span is just a contiguous sequence of words



End-to-end Model
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• First embed the words in the document using a word embedding matrix and a 
character-level CNN

General Electric said the Postal Service contacted the company

General Electric

+

Electric said the

+

the Postal Service

+

Service contacted the

+

the company

+

Mention score (sm)

Span representation (g)

Span head (x̂)

Bidirectional LSTM (x∗)

Word & character
embedding (x)

Figure 1: First step of the end-to-end coreference resolution model, which computes embedding repre-

sentations of spans for scoring potential entity mentions. Low-scoring spans are pruned, so that only a

manageable number of spans is considered for coreference decisions. In general, the model considers all

possible spans up to a maximum width, but we depict here only a small subset.

General Electric the Postal Service the company

s(the company,
General Electric)

s(the company,
the Postal Service)

s(the company, ε) = 0

Softmax (P (yi | D))

Coreference
score (s)

Antecedent score (sa)

Mention score (sm)

Span
representation (g)

Figure 2: Second step of our model. Antecedent

scores are computed from pairs of span represen-

tations. The final coreference score of a pair of

spans is computed by summing the mention scores

of both spans and their pairwise antecedent score.

By fixing the score of the dummy antecedent ε

to 0, the model predicts the best scoring antecedent

if any non-dummy scores are positive, and it ab-

stains if they are all negative.

A challenging aspect of this model is that its

size is O(T 4) in the document length. As we will

see in Section 5, the above factoring enables ag-

gressive pruning of spans that are unlikely to be-

long to a coreference cluster according the men-

tion score sm(i).

Scoring Architecture We propose an end-to-

end neural architecture that computes the above

scores given the document and its metadata.

At the core of the model are vector representa-

tions gi for each possible span i, which we de-

scribe in detail in the following section. Given

these span representations, the scoring functions

above are computed via standard feed-forward

neural networks:

sm(i) = wm · FFNNm(gi)

sa(i, j) = wa · FFNNa([gi,gj,gi ◦ gj ,φ(i, j)])

where · denotes the dot product, ◦ denotes

element-wise multiplication, and FFNN denotes a

feed-forward neural network that computes a non-

linear mapping from input to output vectors.

The antecedent scoring function sa(i, j) in-

cludes explicit element-wise similarity of each

span gi ◦ gj and a feature vector φ(i, j) encoding

speaker and genre information from the metadata

and the distance between the two spans.

Span Representations Two types of infor-

mation are crucial to accurately predicting

coreference links: the context surrounding

the mention span and the internal structure

within the span. We use a bidirectional

LSTM (Hochreiter and Schmidhuber, 1997) to en-

code the lexical information of both the inside and

outside of each span. We also include an attention

mechanism over words in each span to model head

words.

We assume vector representations of each word

{x1, . . . ,xT }, which are composed of fixed pre-

trained word embeddings and 1-dimensional con-

volution neural networks (CNN) over characters

(see Section 7.1 for details)

To compute vector representations of each span,

we first use bidirectional LSTMs to encode every



End-to-end Model
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• Then run a bidirectional LSTM over the document

General Electric said the Postal Service contacted the company

General Electric

+

Electric said the

+

the Postal Service

+

Service contacted the

+

the company

+

Mention score (sm)

Span representation (g)

Span head (x̂)

Bidirectional LSTM (x∗)

Word & character
embedding (x)

Figure 1: First step of the end-to-end coreference resolution model, which computes embedding repre-

sentations of spans for scoring potential entity mentions. Low-scoring spans are pruned, so that only a

manageable number of spans is considered for coreference decisions. In general, the model considers all

possible spans up to a maximum width, but we depict here only a small subset.

General Electric the Postal Service the company

s(the company,
General Electric)

s(the company,
the Postal Service)

s(the company, ε) = 0

Softmax (P (yi | D))

Coreference
score (s)

Antecedent score (sa)

Mention score (sm)

Span
representation (g)

Figure 2: Second step of our model. Antecedent

scores are computed from pairs of span represen-

tations. The final coreference score of a pair of

spans is computed by summing the mention scores

of both spans and their pairwise antecedent score.

By fixing the score of the dummy antecedent ε

to 0, the model predicts the best scoring antecedent

if any non-dummy scores are positive, and it ab-

stains if they are all negative.

A challenging aspect of this model is that its

size is O(T 4) in the document length. As we will

see in Section 5, the above factoring enables ag-

gressive pruning of spans that are unlikely to be-

long to a coreference cluster according the men-

tion score sm(i).

Scoring Architecture We propose an end-to-

end neural architecture that computes the above

scores given the document and its metadata.

At the core of the model are vector representa-

tions gi for each possible span i, which we de-

scribe in detail in the following section. Given

these span representations, the scoring functions

above are computed via standard feed-forward

neural networks:

sm(i) = wm · FFNNm(gi)

sa(i, j) = wa · FFNNa([gi,gj,gi ◦ gj ,φ(i, j)])

where · denotes the dot product, ◦ denotes

element-wise multiplication, and FFNN denotes a

feed-forward neural network that computes a non-

linear mapping from input to output vectors.

The antecedent scoring function sa(i, j) in-

cludes explicit element-wise similarity of each

span gi ◦ gj and a feature vector φ(i, j) encoding

speaker and genre information from the metadata

and the distance between the two spans.

Span Representations Two types of infor-

mation are crucial to accurately predicting

coreference links: the context surrounding

the mention span and the internal structure

within the span. We use a bidirectional

LSTM (Hochreiter and Schmidhuber, 1997) to en-

code the lexical information of both the inside and

outside of each span. We also include an attention

mechanism over words in each span to model head

words.

We assume vector representations of each word

{x1, . . . ,xT }, which are composed of fixed pre-

trained word embeddings and 1-dimensional con-

volution neural networks (CNN) over characters

(see Section 7.1 for details)

To compute vector representations of each span,

we first use bidirectional LSTMs to encode every



End-to-end Model
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• Next, represent each span of text i going from START(i) to END(i) as a vector

General Electric said the Postal Service contacted the company

General Electric

+

Electric said the

+

the Postal Service

+

Service contacted the

+

the company

+

Mention score (sm)

Span representation (g)

Span head (x̂)

Bidirectional LSTM (x∗)

Word & character
embedding (x)

Figure 1: First step of the end-to-end coreference resolution model, which computes embedding repre-

sentations of spans for scoring potential entity mentions. Low-scoring spans are pruned, so that only a

manageable number of spans is considered for coreference decisions. In general, the model considers all

possible spans up to a maximum width, but we depict here only a small subset.

General Electric the Postal Service the company

s(the company,
General Electric)

s(the company,
the Postal Service)

s(the company, ε) = 0

Softmax (P (yi | D))

Coreference
score (s)

Antecedent score (sa)

Mention score (sm)

Span
representation (g)

Figure 2: Second step of our model. Antecedent

scores are computed from pairs of span represen-

tations. The final coreference score of a pair of

spans is computed by summing the mention scores

of both spans and their pairwise antecedent score.

By fixing the score of the dummy antecedent ε

to 0, the model predicts the best scoring antecedent

if any non-dummy scores are positive, and it ab-

stains if they are all negative.

A challenging aspect of this model is that its

size is O(T 4) in the document length. As we will

see in Section 5, the above factoring enables ag-

gressive pruning of spans that are unlikely to be-

long to a coreference cluster according the men-

tion score sm(i).

Scoring Architecture We propose an end-to-

end neural architecture that computes the above

scores given the document and its metadata.

At the core of the model are vector representa-

tions gi for each possible span i, which we de-

scribe in detail in the following section. Given

these span representations, the scoring functions

above are computed via standard feed-forward

neural networks:

sm(i) = wm · FFNNm(gi)

sa(i, j) = wa · FFNNa([gi,gj,gi ◦ gj ,φ(i, j)])

where · denotes the dot product, ◦ denotes

element-wise multiplication, and FFNN denotes a

feed-forward neural network that computes a non-

linear mapping from input to output vectors.

The antecedent scoring function sa(i, j) in-

cludes explicit element-wise similarity of each

span gi ◦ gj and a feature vector φ(i, j) encoding

speaker and genre information from the metadata

and the distance between the two spans.

Span Representations Two types of infor-

mation are crucial to accurately predicting

coreference links: the context surrounding

the mention span and the internal structure

within the span. We use a bidirectional

LSTM (Hochreiter and Schmidhuber, 1997) to en-

code the lexical information of both the inside and

outside of each span. We also include an attention

mechanism over words in each span to model head

words.

We assume vector representations of each word

{x1, . . . ,xT }, which are composed of fixed pre-

trained word embeddings and 1-dimensional con-

volution neural networks (CNN) over characters

(see Section 7.1 for details)

To compute vector representations of each span,

we first use bidirectional LSTMs to encode every
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• Next, represent each span of text i going from START(i) to END(i) as a vector

• General, General Electric, General Electric said, …, Electric, Electric 
said, … will all get its own vector representation
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+
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+
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+

Service contacted the

+

the company
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Figure 1: First step of the end-to-end coreference resolution model, which computes embedding repre-

sentations of spans for scoring potential entity mentions. Low-scoring spans are pruned, so that only a

manageable number of spans is considered for coreference decisions. In general, the model considers all

possible spans up to a maximum width, but we depict here only a small subset.
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Figure 2: Second step of our model. Antecedent

scores are computed from pairs of span represen-

tations. The final coreference score of a pair of

spans is computed by summing the mention scores

of both spans and their pairwise antecedent score.
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to 0, the model predicts the best scoring antecedent

if any non-dummy scores are positive, and it ab-

stains if they are all negative.

A challenging aspect of this model is that its

size is O(T 4) in the document length. As we will

see in Section 5, the above factoring enables ag-

gressive pruning of spans that are unlikely to be-

long to a coreference cluster according the men-

tion score sm(i).

Scoring Architecture We propose an end-to-

end neural architecture that computes the above

scores given the document and its metadata.
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see in Section 5, the above factoring enables ag-

gressive pruning of spans that are unlikely to be-
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tion score sm(i).
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code the lexical information of both the inside and
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{x1, . . . ,xT }, which are composed of fixed pre-

trained word embeddings and 1-dimensional con-
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• Next, represent each span of text i going from START(i) to END(i) as a vector
• For example, for “the postal service”

Span representation:

word in its context:

ft,δ = σ(Wf[xt,ht+δ,δ] + bi)

ot,δ = σ(Wo[xt,ht+δ,δ] + bo)

c̃t,δ = tanh(Wc[xt,ht+δ,δ] + bc)

ct,δ = ft,δ ◦ c̃t,δ + (1− ft,δ) ◦ ct+δ,δ

ht,δ = ot,δ ◦ tanh(ct,δ)

x∗
t = [ht,1,ht,−1]

where δ ∈ {−1, 1} indicates the directionality of

each LSTM, and x∗
t is the concatenated output

of the bidirectional LSTM. We use independent

LSTMs for every sentence, since cross-sentence

context was not helpful in our experiments.

Syntactic heads are typically included as fea-

tures in previous systems (Durrett and Klein,

2013; Clark and Manning, 2016b,a). Instead of re-

lying on syntactic parses, our model learns a task-

specific notion of headedness using an attention

mechanism (Bahdanau et al., 2014) over words in

each span:

αt = wα · FFNNα(x
∗
t )

ai,t =
exp(αt)

END(i)∑

k=START(i)

exp(αk)

x̂i =

END(i)∑

t=START(i)

ai,t · xt

where x̂i is a weighted sum of word vectors in

span i. The weights ai,t are automatically learned

and correlate strongly with traditional definitions

of head words as we will see in Section 9.2.

The above span information is concatenated to

produce the final representation gi of span i:

gi = [x∗
START(i),x

∗
END(i), x̂i,φ(i)]

This generalizes the recurrent span repre-

sentations recently proposed for question-

answering (Lee et al., 2016), which only include

the boundary representations x∗
START(i) and

x∗
END(i). We introduce the soft head word vector

x̂i and a feature vector φ(i) encoding the size of

span i.

5 Inference

The size of the full model described above is

O(T 4) in the document length T . To maintain

computation efficiency, we prune the candidate

spans greedily during both training and evaluation.

We only consider spans with up to L words and

compute their unary mention scores sm(i) (as de-

fined in Section 4). To further reduce the number

of spans to consider, we only keep up to λT spans

with the highest mention scores and consider only

up to K antecedents for each. We also enforce

non-crossing bracketing structures with a simple

suppression scheme.2 We accept spans in de-

creasing order of the mention scores, unless, when

considering span i, there exists a previously ac-

cepted span j such that START(i) < START(j) ≤
END(i) < END(j) ∨ START(j) < START(i) ≤
END(j) < END(i).

Despite these aggressive pruning strategies, we

maintain a high recall of gold mentions in our ex-

periments (over 92% when λ = 0.4).

For the remaining mentions, the joint distribu-

tion of antecedents for each document is computed

in a forward pass over a single computation graph.

The final prediction is the clustering produced by

the most likely configuration.

6 Learning

In the training data, only clustering information

is observed. Since the antecedents are latent, we

optimize the marginal log-likelihood of all correct

antecedents implied by the gold clustering:

log
N∏

i=1

∑

ŷ∈Y(i)∩GOLD(i)

P (ŷ)

where GOLD(i) is the set of spans in the gold clus-

ter containing span i. If span i does not belong

to a gold cluster or all gold antecedents have been

pruned, GOLD(i) = {ε}.

By optimizing this objective, the model natu-

rally learns to prune spans accurately. While the

initial pruning is completely random, only gold

mentions receive positive updates. The model can

quickly leverage this learning signal for appropri-

ate credit assignment to the different factors, such

as the mention scores sm used for pruning.

Fixing score of the dummy antecedent to zero

removes a spurious degree of freedom in the over-

all model with respect to mention detection. It

also prevents the span pruning from introducing

2The official CoNLL-2012 evaluation only considers pre-
dictions without crossing mentions to be valid. Enforcing this
consistency is not inherently necessary in our model.

Attention-based representation 
(details next slide) of the words 
in the span

Additional featuresBILSTM hidden states for 
span’s start and end
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compute their unary mention scores sm(i) (as de-

fined in Section 4). To further reduce the number
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with the highest mention scores and consider only

up to K antecedents for each. We also enforce

non-crossing bracketing structures with a simple

suppression scheme.2 We accept spans in de-

creasing order of the mention scores, unless, when

considering span i, there exists a previously ac-

cepted span j such that START(i) < START(j) ≤
END(i) < END(j) ∨ START(j) < START(i) ≤
END(j) < END(i).

Despite these aggressive pruning strategies, we

maintain a high recall of gold mentions in our ex-

periments (over 92% when λ = 0.4).

For the remaining mentions, the joint distribu-

tion of antecedents for each document is computed

in a forward pass over a single computation graph.

The final prediction is the clustering produced by

the most likely configuration.

6 Learning

In the training data, only clustering information

is observed. Since the antecedents are latent, we

optimize the marginal log-likelihood of all correct

antecedents implied by the gold clustering:

log
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where GOLD(i) is the set of spans in the gold clus-

ter containing span i. If span i does not belong

to a gold cluster or all gold antecedents have been

pruned, GOLD(i) = {ε}.

By optimizing this objective, the model natu-

rally learns to prune spans accurately. While the

initial pruning is completely random, only gold

mentions receive positive updates. The model can

quickly leverage this learning signal for appropri-

ate credit assignment to the different factors, such

as the mention scores sm used for pruning.

Fixing score of the dummy antecedent to zero

removes a spurious degree of freedom in the over-

all model with respect to mention detection. It

also prevents the span pruning from introducing

2The official CoNLL-2012 evaluation only considers pre-
dictions without crossing mentions to be valid. Enforcing this
consistency is not inherently necessary in our model.
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Figure 1: First step of the end-to-end coreference resolution model, which computes embedding repre-

sentations of spans for scoring potential entity mentions. Low-scoring spans are pruned, so that only a

manageable number of spans is considered for coreference decisions. In general, the model considers all

possible spans up to a maximum width, but we depict here only a small subset.
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Figure 2: Second step of our model. Antecedent

scores are computed from pairs of span represen-

tations. The final coreference score of a pair of

spans is computed by summing the mention scores

of both spans and their pairwise antecedent score.

By fixing the score of the dummy antecedent ε

to 0, the model predicts the best scoring antecedent

if any non-dummy scores are positive, and it ab-

stains if they are all negative.

A challenging aspect of this model is that its

size is O(T 4) in the document length. As we will

see in Section 5, the above factoring enables ag-

gressive pruning of spans that are unlikely to be-

long to a coreference cluster according the men-

tion score sm(i).

Scoring Architecture We propose an end-to-

end neural architecture that computes the above

scores given the document and its metadata.

At the core of the model are vector representa-

tions gi for each possible span i, which we de-

scribe in detail in the following section. Given

these span representations, the scoring functions

above are computed via standard feed-forward

neural networks:

sm(i) = wm · FFNNm(gi)

sa(i, j) = wa · FFNNa([gi,gj,gi ◦ gj ,φ(i, j)])

where · denotes the dot product, ◦ denotes

element-wise multiplication, and FFNN denotes a

feed-forward neural network that computes a non-

linear mapping from input to output vectors.

The antecedent scoring function sa(i, j) in-

cludes explicit element-wise similarity of each

span gi ◦ gj and a feature vector φ(i, j) encoding

speaker and genre information from the metadata

and the distance between the two spans.

Span Representations Two types of infor-

mation are crucial to accurately predicting

coreference links: the context surrounding

the mention span and the internal structure

within the span. We use a bidirectional

LSTM (Hochreiter and Schmidhuber, 1997) to en-

code the lexical information of both the inside and

outside of each span. We also include an attention

mechanism over words in each span to model head

words.

We assume vector representations of each word

{x1, . . . ,xT }, which are composed of fixed pre-

trained word embeddings and 1-dimensional con-

volution neural networks (CNN) over characters

(see Section 7.1 for details)

To compute vector representations of each span,

we first use bidirectional LSTMs to encode every

• is an attention-weighted average of the word embeddings in the 
span

word in its context:

ft,δ = σ(Wf[xt,ht+δ,δ] + bi)

ot,δ = σ(Wo[xt,ht+δ,δ] + bo)

c̃t,δ = tanh(Wc[xt,ht+δ,δ] + bc)

ct,δ = ft,δ ◦ c̃t,δ + (1− ft,δ) ◦ ct+δ,δ

ht,δ = ot,δ ◦ tanh(ct,δ)

x∗
t = [ht,1,ht,−1]

where δ ∈ {−1, 1} indicates the directionality of

each LSTM, and x∗
t is the concatenated output

of the bidirectional LSTM. We use independent

LSTMs for every sentence, since cross-sentence

context was not helpful in our experiments.

Syntactic heads are typically included as fea-

tures in previous systems (Durrett and Klein,

2013; Clark and Manning, 2016b,a). Instead of re-

lying on syntactic parses, our model learns a task-

specific notion of headedness using an attention

mechanism (Bahdanau et al., 2014) over words in

each span:

αt = wα · FFNNα(x
∗
t )

ai,t =
exp(αt)

END(i)∑

k=START(i)

exp(αk)

x̂i =

END(i)∑

t=START(i)

ai,t · xt

where x̂i is a weighted sum of word vectors in

span i. The weights ai,t are automatically learned

and correlate strongly with traditional definitions

of head words as we will see in Section 9.2.

The above span information is concatenated to

produce the final representation gi of span i:

gi = [x∗
START(i),x

∗
END(i), x̂i,φ(i)]

This generalizes the recurrent span repre-

sentations recently proposed for question-

answering (Lee et al., 2016), which only include

the boundary representations x∗
START(i) and

x∗
END(i). We introduce the soft head word vector

x̂i and a feature vector φ(i) encoding the size of

span i.

5 Inference

The size of the full model described above is

O(T 4) in the document length T . To maintain

computation efficiency, we prune the candidate

spans greedily during both training and evaluation.

We only consider spans with up to L words and

compute their unary mention scores sm(i) (as de-

fined in Section 4). To further reduce the number

of spans to consider, we only keep up to λT spans

with the highest mention scores and consider only

up to K antecedents for each. We also enforce

non-crossing bracketing structures with a simple

suppression scheme.2 We accept spans in de-

creasing order of the mention scores, unless, when

considering span i, there exists a previously ac-

cepted span j such that START(i) < START(j) ≤
END(i) < END(j) ∨ START(j) < START(i) ≤
END(j) < END(i).

Despite these aggressive pruning strategies, we

maintain a high recall of gold mentions in our ex-

periments (over 92% when λ = 0.4).

For the remaining mentions, the joint distribu-

tion of antecedents for each document is computed

in a forward pass over a single computation graph.

The final prediction is the clustering produced by

the most likely configuration.

6 Learning

In the training data, only clustering information

is observed. Since the antecedents are latent, we

optimize the marginal log-likelihood of all correct

antecedents implied by the gold clustering:

log
N∏

i=1

∑

ŷ∈Y(i)∩GOLD(i)

P (ŷ)

where GOLD(i) is the set of spans in the gold clus-

ter containing span i. If span i does not belong

to a gold cluster or all gold antecedents have been

pruned, GOLD(i) = {ε}.

By optimizing this objective, the model natu-

rally learns to prune spans accurately. While the

initial pruning is completely random, only gold

mentions receive positive updates. The model can

quickly leverage this learning signal for appropri-

ate credit assignment to the different factors, such

as the mention scores sm used for pruning.

Fixing score of the dummy antecedent to zero

removes a spurious degree of freedom in the over-

all model with respect to mention detection. It

also prevents the span pruning from introducing

2The official CoNLL-2012 evaluation only considers pre-
dictions without crossing mentions to be valid. Enforcing this
consistency is not inherently necessary in our model.
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• Why include all these different terms in the span?

word in its context:
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where δ ∈ {−1, 1} indicates the directionality of

each LSTM, and x∗
t is the concatenated output

of the bidirectional LSTM. We use independent

LSTMs for every sentence, since cross-sentence

context was not helpful in our experiments.

Syntactic heads are typically included as fea-

tures in previous systems (Durrett and Klein,

2013; Clark and Manning, 2016b,a). Instead of re-

lying on syntactic parses, our model learns a task-
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where x̂i is a weighted sum of word vectors in
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and correlate strongly with traditional definitions

of head words as we will see in Section 9.2.

The above span information is concatenated to

produce the final representation gi of span i:

gi = [x∗
START(i),x
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END(i), x̂i,φ(i)]

This generalizes the recurrent span repre-

sentations recently proposed for question-

answering (Lee et al., 2016), which only include

the boundary representations x∗
START(i) and

x∗
END(i). We introduce the soft head word vector

x̂i and a feature vector φ(i) encoding the size of

span i.

5 Inference

The size of the full model described above is

O(T 4) in the document length T . To maintain

computation efficiency, we prune the candidate

spans greedily during both training and evaluation.

We only consider spans with up to L words and

compute their unary mention scores sm(i) (as de-

fined in Section 4). To further reduce the number

of spans to consider, we only keep up to λT spans

with the highest mention scores and consider only

up to K antecedents for each. We also enforce

non-crossing bracketing structures with a simple

suppression scheme.2 We accept spans in de-

creasing order of the mention scores, unless, when

considering span i, there exists a previously ac-

cepted span j such that START(i) < START(j) ≤
END(i) < END(j) ∨ START(j) < START(i) ≤
END(j) < END(i).

Despite these aggressive pruning strategies, we

maintain a high recall of gold mentions in our ex-

periments (over 92% when λ = 0.4).

For the remaining mentions, the joint distribu-

tion of antecedents for each document is computed

in a forward pass over a single computation graph.

The final prediction is the clustering produced by

the most likely configuration.

6 Learning

In the training data, only clustering information

is observed. Since the antecedents are latent, we

optimize the marginal log-likelihood of all correct

antecedents implied by the gold clustering:

log
N∏

i=1

∑

ŷ∈Y(i)∩GOLD(i)

P (ŷ)

where GOLD(i) is the set of spans in the gold clus-

ter containing span i. If span i does not belong

to a gold cluster or all gold antecedents have been

pruned, GOLD(i) = {ε}.

By optimizing this objective, the model natu-

rally learns to prune spans accurately. While the

initial pruning is completely random, only gold

mentions receive positive updates. The model can

quickly leverage this learning signal for appropri-

ate credit assignment to the different factors, such

as the mention scores sm used for pruning.

Fixing score of the dummy antecedent to zero

removes a spurious degree of freedom in the over-

all model with respect to mention detection. It

also prevents the span pruning from introducing

2The official CoNLL-2012 evaluation only considers pre-
dictions without crossing mentions to be valid. Enforcing this
consistency is not inherently necessary in our model.

hidden states for 
span’s start and 
end

Represents the 
context to the 
left and right of 
the span

Attention-based 
representation

Represents the span itself

Additional 
features

Represents other 
information not 
in the text
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• Lastly, score every pair of spans to decide if they are coreferent 
mentions

nesses of the approach.

2 Related Work

Machine learning methods have a long history

in coreference resolution (see Ng (2010) for a

detailed survey). However, the learning prob-

lem is challenging and, until very recently, hand-

engineered systems built on top of automati-

cally produced parse trees (Raghunathan et al.,

2010) outperformed all learning approaches.

Durrett and Klein (2013) showed that highly lex-

ical learning approaches reverse this trend, and

more recent neural models (Wiseman et al., 2016;

Clark and Manning, 2016b,a) have achieved sig-

nificant performance gains. However, all of these

models use parsers for head features and in-

clude highly engineered mention proposal algo-

rithms.1 Such pipelined systems suffer from two

major drawbacks: (1) parsing mistakes can intro-

duce cascading errors and (2) many of the hand-

engineered rules do not generalize to new lan-

guages.

A non-pipelined system that jointly models

mention detection and coreference resolution was

first proposed by Daumé III and Marcu (2005).

They introduce a search-based system that pre-

dicts the coreference structure in a left-to-right

transition system that can incorporate global fea-

tures. In contrast, our approach performs well

while making much stronger independence as-

sumptions, enabling straightforward inference.

More generally, a wide variety of approaches

for learning coreference models have been pro-

posed. They can typically be categorized as

(1) mention-pair classifiers (Ng and Cardie,

2002; Bengtson and Roth, 2008), (2)

entity-level models (Haghighi and Klein,

2010; Clark and Manning, 2015, 2016b;

Wiseman et al., 2016), (3) latent-tree mod-

els (Fernandes et al., 2012; Björkelund and Kuhn,

2014; Martschat and Strube, 2015), or (4)

mention-ranking models (Durrett and Klein,

2013; Wiseman et al., 2015; Clark and Manning,

2016a). Our span-ranking approach is most

similar to mention ranking, but we reason over

a larger space by jointly detecting mentions and

predicting coreference.

1For example, Raghunathan et al. (2010) use rules to re-
move pleonastic mentions of it detected by 12 lexicalized reg-
ular expressions over English parse trees.

3 Task

We formulate the task of end-to-end coreference

resolution as a set of decisions for every possible

span in the document. The input is a document D

containing T words along with metadata such as

speaker and genre information.

Let N = T (T+1)
2 be the number of possible text

spans in D. Denote the start and end indices of a

span i in D respectively by START(i) and END(i),

for 1 ≤ i ≤ N . We assume an ordering of the

spans based on START(i); spans with the same start

index are ordered by END(i).

The task is to assign to each span i an an-

tecedent yi. The set of possible assignments for

each yi is Y(i) = {ε, 1, . . . , i − 1}, a dummy

antecedent ε and all preceding spans. True an-

tecedents of span i, i.e. span j such that 1 ≤ j ≤
i− 1, represent coreference links between i and j.

The dummy antecedent ε represents two possible

scenarios: (1) the span is not an entity mention or

(2) the span is an entity mention but it is not coref-

erent with any previous span. These decisions im-

plicitly define a final clustering, which can be re-

covered by grouping all spans that are connected

by a set of antecedent predictions.

4 Model

We aim to learn a conditional probability distribu-

tion P (y1, . . . , yN | D) whose most likely config-

uration produces the correct clustering. We use a

product of multinomials for each span:

P (y1, . . . , yN | D) =
N∏

i=1

P (yi | D)

=
N∏

i=1

exp(s(i, yi))∑
y′∈Y(i) exp(s(i, y

′))

where s(i, j) is a pairwise score for a coreference

link between span i and span j in document D. We

omit the document D from the notation when the

context is unambiguous. There are three factors

for this pairwise coreference score: (1) whether

span i is a mention, (2) whether span j is a men-

tion, and (3) whether j is an antecedent of i:

s(i, j) =

{
0 j = ε

sm(i) + sm(j) + sa(i, j) j #= ε

Here sm(i) is a unary score for span i being a men-

tion, and sa(i, j) is pairwise score for span j being

an antecedent of span i.
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mention detection and coreference resolution was

first proposed by Daumé III and Marcu (2005).
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transition system that can incorporate global fea-

tures. In contrast, our approach performs well

while making much stronger independence as-
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(1) mention-pair classifiers (Ng and Cardie,

2002; Bengtson and Roth, 2008), (2)

entity-level models (Haghighi and Klein,

2010; Clark and Manning, 2015, 2016b;

Wiseman et al., 2016), (3) latent-tree mod-

els (Fernandes et al., 2012; Björkelund and Kuhn,

2014; Martschat and Strube, 2015), or (4)

mention-ranking models (Durrett and Klein,

2013; Wiseman et al., 2015; Clark and Manning,

2016a). Our span-ranking approach is most

similar to mention ranking, but we reason over

a larger space by jointly detecting mentions and

predicting coreference.

1For example, Raghunathan et al. (2010) use rules to re-
move pleonastic mentions of it detected by 12 lexicalized reg-
ular expressions over English parse trees.

3 Task

We formulate the task of end-to-end coreference

resolution as a set of decisions for every possible

span in the document. The input is a document D

containing T words along with metadata such as

speaker and genre information.

Let N = T (T+1)
2 be the number of possible text

spans in D. Denote the start and end indices of a

span i in D respectively by START(i) and END(i),

for 1 ≤ i ≤ N . We assume an ordering of the

spans based on START(i); spans with the same start

index are ordered by END(i).

The task is to assign to each span i an an-

tecedent yi. The set of possible assignments for

each yi is Y(i) = {ε, 1, . . . , i − 1}, a dummy

antecedent ε and all preceding spans. True an-

tecedents of span i, i.e. span j such that 1 ≤ j ≤
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The dummy antecedent ε represents two possible

scenarios: (1) the span is not an entity mention or

(2) the span is an entity mention but it is not coref-

erent with any previous span. These decisions im-

plicitly define a final clustering, which can be re-

covered by grouping all spans that are connected

by a set of antecedent predictions.
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product of multinomials for each span:
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omit the document D from the notation when the

context is unambiguous. There are three factors

for this pairwise coreference score: (1) whether
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s(i, j) =

{
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Are spans i and j 
coreferent 
mentions?

Is i a mention? Is j a mention? Do they look 
coreferent?

General Electric said the Postal Service contacted the company

General Electric

+

Electric said the

+

the Postal Service

+

Service contacted the

+

the company

+

Mention score (sm)

Span representation (g)

Span head (x̂)

Bidirectional LSTM (x∗)

Word & character
embedding (x)

Figure 1: First step of the end-to-end coreference resolution model, which computes embedding repre-

sentations of spans for scoring potential entity mentions. Low-scoring spans are pruned, so that only a

manageable number of spans is considered for coreference decisions. In general, the model considers all

possible spans up to a maximum width, but we depict here only a small subset.

General Electric the Postal Service the company

s(the company,
General Electric)

s(the company,
the Postal Service)

s(the company, ε) = 0

Softmax (P (yi | D))

Coreference
score (s)

Antecedent score (sa)

Mention score (sm)

Span
representation (g)

Figure 2: Second step of our model. Antecedent

scores are computed from pairs of span represen-

tations. The final coreference score of a pair of

spans is computed by summing the mention scores

of both spans and their pairwise antecedent score.

By fixing the score of the dummy antecedent ε

to 0, the model predicts the best scoring antecedent

if any non-dummy scores are positive, and it ab-

stains if they are all negative.

A challenging aspect of this model is that its

size is O(T 4) in the document length. As we will

see in Section 5, the above factoring enables ag-

gressive pruning of spans that are unlikely to be-

long to a coreference cluster according the men-

tion score sm(i).

Scoring Architecture We propose an end-to-

end neural architecture that computes the above

scores given the document and its metadata.

At the core of the model are vector representa-

tions gi for each possible span i, which we de-

scribe in detail in the following section. Given

these span representations, the scoring functions

above are computed via standard feed-forward

neural networks:

sm(i) = wm · FFNNm(gi)

sa(i, j) = wa · FFNNa([gi,gj,gi ◦ gj ,φ(i, j)])

where · denotes the dot product, ◦ denotes

element-wise multiplication, and FFNN denotes a

feed-forward neural network that computes a non-

linear mapping from input to output vectors.

The antecedent scoring function sa(i, j) in-

cludes explicit element-wise similarity of each

span gi ◦ gj and a feature vector φ(i, j) encoding

speaker and genre information from the metadata

and the distance between the two spans.

Span Representations Two types of infor-

mation are crucial to accurately predicting

coreference links: the context surrounding

the mention span and the internal structure

within the span. We use a bidirectional

LSTM (Hochreiter and Schmidhuber, 1997) to en-

code the lexical information of both the inside and

outside of each span. We also include an attention

mechanism over words in each span to model head

words.

We assume vector representations of each word

{x1, . . . ,xT }, which are composed of fixed pre-

trained word embeddings and 1-dimensional con-

volution neural networks (CNN) over characters

(see Section 7.1 for details)

To compute vector representations of each span,

we first use bidirectional LSTMs to encode every

• Scoring functions take the span representations as input

include multiplicative 
interactions between 
the representations

again, we have some 
extra features
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• Intractable to score every pair of spans
• O(T^2) spans of text in a document (T is the number of words)
• O(T^4) runtime! 
• So have to do lots of pruning to make work (only consider a few of 

the spans that are likely to be mentions)

• Attention learns which words are important in a mention (a bit like 
head words)

1

(A fire in a Bangladeshi garment factory) has left at least 37 people dead and 100 hospitalized. Most
of the deceased were killed in the crush as workers tried to flee (the blaze) in the four-story building.

A fire in (a Bangladeshi garment factory) has left at least 37 people dead and 100 hospitalized. Most
of the deceased were killed in the crush as workers tried to flee the blaze in (the four-story building).

2

We are looking for (a region of central Italy bordering the Adriatic Sea). (The area) is mostly
mountainous and includes Mt. Corno, the highest peak of the Apennines. (It) also includes a lot of
sheep, good clean-living, healthy sheep, and an Italian entrepreneur has an idea about how to make a
little money of them.

3
(The flight attendants) have until 6:00 today to ratify labor concessions. (The pilots’) union and ground
crew did so yesterday.

4

(Prince Charles and his new wife Camilla) have jumped across the pond and are touring the United
States making (their) first stop today in New York. It’s Charles’ first opportunity to showcase his new
wife, but few Americans seem to care. Here’s Jeanie Mowth. What a difference two decades make.
(Charles and Diana) visited a JC Penney’s on the prince’s last official US tour. Twenty years later
here’s the prince with his new wife.

5
Also such location devices, (some ships) have smoke floats (they) can toss out so the man overboard
will be able to use smoke signals as a way of trying to, let the rescuer locate (them).

Table 4: Examples predictions from the development data. Each row depicts a single coreference cluster

predicted by our model. Bold, parenthesized spans indicate mentions in the predicted cluster. The

redness of each word indicates the weight of the head-finding attention mechanism (ai,t in Section 4).

1 2 3 4 5 6 7 8 9 10

10
20
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50
60
70
80
90

100

Span width

%

Constituency precision

Head word precision

Frequency

Figure 4: Indirect measure of mention precision

using agreement with gold syntax. Constituency

precision: % of unpruned spans matching syn-

tactic constituents. Head word precision: % of

unpruned constituents whose syntactic head word

matches the most attended word. Frequency: % of

gold spans with each width.

high, since no explicit supervision of syntactic

heads is provided. The model simply learns from

the clustering data that these head words are useful

for making coreference decisions.

9.4 Qualitative Analysis

Our qualitative analysis in Table 4 highlights the

strengths and weaknesses of our model. Each row

is a visualization of a single coreference cluster

predicted by the model. Bolded spans in paren-

theses belong to the predicted cluster, and the red-

ness of a word indicates its weight from the head-

finding attention mechanism (ai,t in Section 4).

Strengths The effectiveness of the attention

mechanism for making coreference decisions can

be seen in Example 1. The model pays attention

to fire in the span A fire in a Bangladeshi gar-

ment factory, allowing it to successfully predict

the coreference link with the blaze. For a sub-

span of that mention, a Bangladeshi garment fac-

tory, the model pays most attention instead to fac-

tory, allowing it successfully predict the corefer-

ence link with the four-story building.

The task-specific nature of the attention mecha-

nism is also illustrated in Example 4. The model

generally pays attention to coordinators more than

the content of the coordination, since coordinators,

such as and, provide strong cues for plurality.

The model is capable of detecting relatively

long and complex noun phrases, such as a re-

gion of central Italy bordering the Adriatic Sea

in Example 2. It also appropriately pays atten-



BERT-based coref: Now has the best results!

• Pretrained transformers can learn long-distance semantic dependencies in text.
• Idea 1, SpanBERT: Pretrains BERT models to be better at span-based prediction tasks 

like coref and QA
• Idea 2, BERT-QA for coref: Treat Coreference like a deep QA task

• “Point to” a mention, and ask “what is its antecedent”
• Answer span is a coreference link

• Idea 3: Maybe you don’t have to do it with spans after all, and you can go back to a
representation of a word (maybe the head) and make things O(T^2)
• Current best model: Dobrovolskii (2021) https://arxiv.org/abs/2109.04127
• Sort of makes sense given richness of transformers
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https://arxiv.org/abs/2109.04127


8. Coreference Evaluation
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• Many different metrics: MUC, CEAF, LEA, B-CUBED, BLANC
• People often report the average over a few different metrics

• Essentially the metrics think of coreference as a clustering  task and 
evaluate the quality of the clustering

System Cluster 1 System Cluster 2

Gold Cluster 1

Gold Cluster 2
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• An example: B-cubed
• For each mention, compute a precision and a recall

System Cluster 1 System Cluster 2

Gold Cluster 1

Gold Cluster 2

P = 4/5
R= 4/6 
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• An example: B-cubed
• For each mention, compute a precision and a recall

System Cluster 1 System Cluster 2

Gold Cluster 1

Gold Cluster 2

P = 4/5
R= 4/6 

P = 1/5
R= 1/3 
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• An example: B-cubed
• For each mention, compute a precision and a recall
• Then average the individual Ps and Rs

System Cluster 1 System Cluster 2

Gold Cluster 1

Gold Cluster 2

P = 2/4
R= 2/3

P = 4/5
R= 4/6 

P = 1/5
R= 1/3 

P = 2/4
R= 2/6 

P = [4(4/5) + 1(1/5) + 2(2/4) + 2(2/4)] / 9 = 0.6  
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100% Precision, 33% Recall 50% Precision, 100% Recall, 



System Performance

64

• OntoNotes dataset: ~3000 documents labeled by humans
• English and Chinese data

• Standard evaluation: an F1 score averaged over 3 coreference metrics



System Performance
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Model English Chinese
Lee et al. (2010) ~55 ~50
Chen & Ng (2012) [CoNLL 2012 Chinese winner] 54.5 57.6
Fernandes (2012) [CoNLL 2012 English winner] 60.7 51.6
Wiseman et al. (2015) 63.3 —
Clark & Manning (2016) 65.4 63.7
Lee et al. (2017) 67.2 —
Joshi et al. (2019) 79.6 —
Wu et al. (2019) [CorefQA] 79.9 —
Xu et al. (2020) 80.2
Dobrovolskii (2021) 81.0

Rule-based system, used 
to be state-of-the-art!
Non-neural machine 
learning models

Neural mention ranker

End-to-end neural ranker
Neural clustering model

End-to-end neural mention 
ranker + SpanBERT
CorefQA

CorefQA + SpanBERT rulez



Where do neural scoring models help?

• Especially with NPs and named entities with no string matching. 
Neural vs non-neural scores:

These kinds of coreference are hard and the scores are still low!
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Anaphor Antecedent
the country’s leftist rebels the guerillas
the company the New York firm
216 sailors from the ``USS cole’’ the crew
the gun the rifle

Example Wins



Conclusion

• Coreference is a useful, challenging, and linguistically interesting task
• Many different kinds of coreference resolution systems

• Systems are getting better rapidly, largely due to better neural models
• But most models still make many mistakes – OntoNotes coref is easy newswire case

• Try out a coreference system yourself!
• http://corenlp.run/ (ask for coref in Annotations)
• https://huggingface.co/coref/

http://corenlp.run/
https://huggingface.co/coref/

