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Abstract

Neural information retrieval (IR) has greatly advanced search and other knowl-
edge intensive language tasks. Recent research has shown that larger encoders
can significantly increase performance of single-vector encoder models such as
Google’s generalizable T5-based dense Retrievers (GTR). However, the effect of
larger encoders have not been tested on ColBERTV2, a leading BERT-based IR
system using multi-vector late-interaction mechanism. In this work, We investigate
how the size and pretraining of encoder affect CoIBERTV2’s in-domain(ID)
and out-of-domain(OOD) accuracy. Compared to the original bert-base encoder,
we see 0.4% / 1.2% increase in ID/OOD accuracy and 30% faster indexing with the
smaller MiniLM encoder. We also see 0.5% / 1.1% increase in ID/OOD accuracy
with bert-large encoder, whereas electra-base shows similar performances to bert-
base encoder. Overall, we find MiniLM to be a more optimal encoder model; we
also conclude that the encoder pretraining contributes more significantly to model
performance than encoder size.
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2 Introduction

Neural information retrieval (IR) has quickly dominated the search landscape over the past 2-3 years,
dramatically advancing knowledge-intensive NLP tasks such as document search (Nogueira and Cho,
2019 [IL]) and question answering (Guu et al., 2020 [2]). This work builds upon ColBERTV2 [3]], a
state-of-the-art bi-encoder IR system.

There are two major paradigms in neural retrievers: single-vector and multi-vector. Single-vector
models encode each document and query as single vector, and use their dot-product as the relevance
score. On the other hand, multi-vector models like ColBERT encode document and query into multi-
vector tokens and uses a rich interaction between the two sets of vectors to compute relevance score.
As the interaction happens efficiently at search time, this paradigm is also called late interaction.
Compared to the single-vector with the final dot-product layer bottleneck, multi-vector architecture is
considered more expressive and generalizable.

In a recent paper, Google Research showed that larger encoders can significantly improve out-
of-domain(OOD) performance of single-vector models [4]). However, no similar experiments on
encoders have been done for multi-vector models like CoIBERTV2. Hence, this project aims to
answer the following question: How does varying the size and pretraining of encoder affect the
in-domain and out-of-domain (ID/OOD) performance of ColBERTv2?
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The current ColBERTV2 uses the BERT-base-uncased model as encoder for both documents and
queries. Therefore, we use bert-base encoder as baseline and experiment with three new models:
MinilLM [5]], electra-base [6] and bert-large [7]]. For each model, we train checkpoints with 100k-
200k steps, then compare their index time and ID/OOD accuracy with the baseline. We observe 1%
increase in ID/OOD accuracy for both MiniLM and bert-large models, despite MiniLM being smaller
and 3x faster in indexing than bert-large.

This work makes the following contributions:

1. We discover a better MiniLM-based encoder with 0.6x index time and 1.2% higher OOD
performance than the current bert-base encoder.

2. We find that encoder pretraining has larger effect on retrieval accuracy than encoder size.

3 Related Work

In recent years, there have been extensive research and new approaches on both single-vector and
multi-vector retrieval models.

Traditional single-vector models include Dense Passage Retrieval (DPR) introduced in Karpukhin et
al.[8]], which uses BERT to encode passages and queries into single dense vectors, with dot-product
similarity as relevance score.

For multi-vector models, a paper by Khattab & Zaharia in 2020 [9] proposed the multi-vector late-
interaction based ColBERT system, encoding documents and queries into sets of token vectors. In
addition to ColBERT, the SPLADE system [[10]] also performs token-level late interaction, but reduces
tokens into one-dimension.

A subsequent work by Khattab et al. in 2022 [3] presents a state-of-the-art COIBERTv2 model
optimized from ColBERT. One key method of optimization is supervision with distilled tuples in
training. Instead of standard (query, positive doc, negative doc) triples, ColBERTV?2 is fine-tuned
with n-way tuples (query, 1 positive doc, n — 1 lower-ranked docs) with scores from a cross-encoder
reranker. We adopt the CoIBERTV2 model as baseline and fine-tune different encoders with the same
n-way tuples.

Soon after CoIBERTv2, work from Google Research [4] showed that larger encoders enables dual
encoder system (the GTR system) to overcome the dot-product bottleneck and generalize even better
than models like CoIBERTV2. The Ni et al. paper shows that retrieval performances steadily improves
across model sizes from GTR-base (110M params) to GTR-XXL (4B params). This inspires us to
investigate whether the same pattern holds for ColBERTv2’s late-interaction based architecture.

4 Approach

Overall, this project builds upon the existing ColBERTV2 architecture, and compares the retrieval
performance (both ID & OOD) and indexing time of 4 different encoders.

4.1 Baseline The current CoIBERTV2 encoder is fine-tuned from BERT-base-uncased model (110M
params) with token vector dimension of 128 and 64-way distillation tuples. In this paper, for faster
iterations, we use as baseline the bert-base-uncased model with token vector dimension of 128,
fine-tuned with 8-way distillation tuples. See Section 5 for index time and ID/OOD accuracy of the
baseline model.

4.2 Encoder Model Selection We picked 3 models across different sizes and pretraining method-
ologies.

For the large model, we use the bert-large-uncased from HuggingFace [[11], with the same pretraining
as our baseline bert-base but scaled up to 336M parameters.

We also include a model of the same size as bert-base but different pretraining: electra-base-
discriminator from HuggingFace. According to the original paper [6]], Electra’s pretraining with
replaced token detection enables it to outperform models of same size and data. We shall see if the
improvements apply to CoIBERTV2 as well.



For the small model, we use microsoft/MiniLM-L12-H384-uncased from HuggingFace [5]. The
MiniLM model has 33M parameters and is distilled from the UniLMv2 model [12]. This is a
combination of changes in both size and pretraining compared to our baseline model bert-base.

4.3 Original Contribution in Code Based on the existing ColBERTv2 codebase [13]], we imple-
mented custom pipeline of scripts for fine-tuning encoders, indexing documents, measuring indexing
time, searching/ranking documents and evaluating ID/OOD accuracy. We also had to modify the
existing codebase to enable training with multiple models as encoder (see code upload).

S Experiments

5.1 Training Data Based on the existing CoIBERTV2 codebase[13], we finetune each model
with tuples generated through cross-encoder. We first used the MS MARCO Passage Ranking
Train Triples [14](query, positive passage, negative passage) to train a ColBERTv1 model. Then,
we used the ColBERTvI model to rank top-k passages and pass them through a cross-encoder to
generate n-way (n = 8) tuples with relevance scores. These tuples are used to fine-tune models for
ColBERTV2.

5.2 Evaluation method For in-domain (ID) model evaluation, we use the MS MARCO Passage
Ranking Top 1000 Dev Set [14]. The evaluation metric used is one of MS MARCO’s default metrics,

MRR@10: MRR = ﬁz\Q\ 1
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For out-of-domain (OOD) evaluation, we use the LOTTE Dev Set [3]. The dataset contains 12
topic-stratified test sets, each with 500-2000 queries and 100k—2M passages across 5 topics (Writing,
Recreation, Science, Technology, Lifestyle), as well as an aggregated Pooled setting. We use LoTTE’s
built-in Success @5 for the Pooled dataset as evaluation metric, where a point is awarded to the system
for each query where it finds an accepted answer from the target page in the top-5 hits.

For both ID and OOD evaluation, we choose to use the test sets’ default metrics (MRR @ 10 for MS
MARCO, Success@5 for LoTTE) to facilitate comparisons with other systems in existing literature.
To examine the model’s ID and OOD improvement together, we also calculate

OOD-to-ID ratio = OOD-improvement / ID-improvement. A large ratio shows that the model
improves OOD generalization more significantly.

5.3 Experimental details We run training (for checkpoint steps of 100-200k), indexing, and
evaluation on four models: bert-base (baseline), MiniLM [3]], electra-base [6] and bert-large [7].
Bert-base, bert-large, amd MinilLM are trained with learning rate of 1e-05, embedding dimension of
128 and distilled tuples with 8 negatives. Due to time constraint, we reduced the dimension to 64 for
comparison between bert-base and electra-base.

For each model, we index the LoTTE Pooled corpus (2.8M passages) with 4 Titan V GPUs in a
multi-core machine with 56 CPU cores. We record the index time in order to compare time efficiency
between models of different sizes.

5.4 Results For each of the 3 models (bert-large, electra-base, miniLM), we report accuracy
comparison between the model and baseline (bert-base) for finetuning steps 100k, 150k and 200k in
two plots, one for ID evaluation and one for OOD evaluation.

In addition to model-specific results, we report a table with index time for each model. We also
present a summary table of the best scores of each model in MS MARCO MRR @10 and LoTTE
Success @5, in comparison to baseline and other systems in existing literature.

1. Bert-large vs. Bert-base

In Figure 1 and 2, we see that bert-large generally performs better than bert-base. Between
checkpoint steps 100k and 200k, bert-large achieves best MRR @ 10 of 38.8 for MS MARCO,
0.5 points higher than the best MRR@10 for bert-base. For OOD performance, best
Success @5 for bert-large beats bert-base by 1.1 points. The OOD-to-ID ratio (as defined in
Section 5.2) is 2.2. It is also worth noticing that bert-large converges to best performance at
100Kk, earlier than the smaller bert-base model.



Bert-large vs. Bert-base (ID) Bert-large vs. Bert-base (OOD)

MRR@10 (MS MARCO)

Figure 1: Bert-large ID Comparison
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Figure 2: Bert-large OOD Comparison

2. Electra-base vs. Bert-base

Figure 3 and 4 shows the ID/OOD performance of electra-base compared to bert-base. Due
to time constraint, we compare electra-base to bert-base with dim=64 (instead of dim=128),
we also did not evaluate the models at the 150k step checkpoint. Interestingly, we see that
electra-base does better than bert-base on MS MARCO (by 0.2 points in best MRR@10),
but with worse out-of-domain performance in LoTTE (worse by 0.1 point in Success@5).
Hence, the OOD-to-ID ratio is -0.5, which is the only negative ratio among the 3 models. We
will further analyze electra-base’s OOD performance by looking into category breakdowns
of LoTTE in Section 6.1.
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Figure 3: Bert-large ID Comparison
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Figure 4: Bert-large OOD Comparison

3. MiniLM vs. Bert-base

Figure 5 and 6 shows the comparison between MiniLM and baseline. MiniLM performs
reasonably better than bert-base in MS MARCO (with 0.4 point improvement), but with
much larger OOD improvement of 1.2 point, leading to the highest OOD-to-ID ratio of 3
among all three models in our experiments. Overall, MiniLM shows the most pronounced
improvement in out-of-domain generalization relative to in-domain improvements. We will
analyze the possible causes for this success in Section 6.2.
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4. Indexing time of each model

We observe a definite trend of increasing index time with larger models. Combared to
baseline bert-base, bert-large’s index time is over 2x, and MiniLM’s index time is 75% that
of bert-base. See Table 1.

bert-base electra-base  bert-large miniLM

# of params 110M 110M 336M 33M
Index Time 2743s 2473s 5109s 1817s
Table 1: Size and Index Time of Models

5. Table of Best Scores

Table 2 compares the best evaluation results of Bert-large and MiniLM to our baseline
(bert-base), ColIBERTV2, and a few other models from literature (we got results of other
models from the original CoIBERTvV2 paper [3]]). We sample a few models both with and
without distillation or special pretraining. (For consistency, we omit results from electra-base
because it is trained with dim=64 due to time constraint, all other ColBERTv2 models have

dim=128).
H MRR@10 (MS MARCO) Success@35 (LoTTE Pooled) H

Models without Distillation or Special Pretraining

DPR 31.1 -
BM25 - 48.3
ANCE 33.0 66.4

Models with Distillation or Special Pretraining
SPLADEv2 36.8 68.9
RocketQAv2 38.8 69.8
ColBERTV2 39.7 71.6

Models in this work (with Distillation)

Bert-base 38.3 67.1
Bert-large 38.8 68.2
MiniLM 38.7 68.3

Table 2: Best ID/OOD Results from Models

From Table 2, we can see that the models in this project have significantly better results
than the non-distilled models, which showcases the strength of the distilled n-way tuples
in fine-tuning. All three models in this work performs worse than ColBERTV2, which is
expected as ColBERTV2 is fine-tuned with 64-way tuples instead of 8-way tuples in this
work.

Despite being fine-tuned with 8-way tuples only, Bert-large and MiniLM still achieves
comparable ID / OOD performance as SPLADEvV2 and RocketQAv?2 (with delta smaller
than 1%).

Among the new models, MiniLM and bert-large performs almost equally well, achieving
0.5% increase in MS MARCO MRR @10 and 1.2% increase in LoOTTE Success @5 compared
to baseline. It is reasonable to believe that if we train either Bert-large or MiniLM encoder
with the full-fledged configurations (64=way tuples etc), it would surpass the performance
of current ColBERTv2. Moreover, MiniLM encoder would enable both higher performance
and shorter index time.

6 Analysis

In this section, we dig deeper into two experiment results. First, why electra-base performs slightly
worse OOD than bert-base (and much worse than the other 2 models); second, why MiniLM performs
equally well as bert-large despite being smaller and almost 3x faster to index than bert-large.



6.1 Topic-wise OOD Analysis First, since the LoTTE dataset arranges passages into five topics
(subgroups of the Pooled dataset from which we measured OOD Success@5), we first investigate the
models’ topic-wise performance. Figure 7 shows each model’s ’delta’ with respect to baseline at their
best performance checkpoint step (100k for electra-base and miniLM, 200k for bert-large), positive
delta signifies improvement and vice versa.
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Figure 7: Topic-wise OOD Delta from Bert-base

From Figure 7, we can see three trends. First, electra-base mostly loses out on writing, recreation
and science compared to the other two models. Second, MiniLM does exceptionally well on science
and technology. Three, all three models performs worse than bert-base in lifestyle.

The exact reasons for these observations require further investigations in future work, here we propose
a few hypotheses. First, the semantics of queries/documents from different topics might differ, and
certain pretraining methods (replaced-token-detection for electra, distillation for miniLM, etc) may
be more/less suited to a particular semantic pattern. Second, of all topics, /ifestyle is the most general
and encompasses the widest range of sub-topics, this may contribute to its being particularly hard for
models to improve on.

6.2 Reason for MiniLM’s Success As shown by the above experiments, MiniLM combines the
best of both worlds: faster indexing and better ID/OOD performance.

This aligns with the observation in the original MiniLM paper [3] that "(the model) retains more than
99% accuracy on SQuAD 2.0 and several GLUE benchmark tasks using 50% of the Transformer
parameters”. This is largely thanks to the deep self-attention distillation which enables the model to
preserve most of the teacher model’s power with fewer parameters.

In our case, as described in Section 4.2, the model is distilled from UniLMv2. According to the
original literature [12], UniLMv2 outperforms BERT in multiple benchmarks, which might also
explain MiniLM performs equally well (even slightly better) as Bert-large despite its small size.

7 Conclusion

7.1 Summary First, among the three models, we find that MiniLM to be the optimal encoder with
improved performance (increase by 0.4 point ID and 1.2 point OOD) and only 0.6x index time as
the current baseline encoder. We find that bert-large shows similar improvements as MiniLLM but 2x
index time as the baseline. Electra-base does not show any significant improvement.

Second, examining model pretraining, size, and performance, we conclude that model pretraining
contributes more to performance than model size. Especially in the case of MiniLM, where distillation



in pretraining allows the model to retain most capacities with much fewer parameters, we confirm
that this pattern continues to hold in systems like CoIBERTV2.

7.2 Limitations Due to time constraint, we were obliged to run experiments on electra-base model
with reduced dimension of 64 instead of 128. We also did not run experiment on the 150k checkpoint
step. With more time, these experiments would put electra-base to a more similar settings as the other
2 models.

Moreover, as mentioned in Section 6.1, further analysis could be done on topic-wise OOD analysis to
better explain the varying performance of certain models/topics. For instance, as a future extension
we might sample common misses’ in each topic to look for shared features.

7.3 Future Work Looking back at Table 2, we see a significant gap between models in this work and
the ColBERTV2 benchmark reported by the original paper. The major difference lies in fine-tuning
data, where 64-way distilled tuples are reduced to 8-way for faster iterations in this work. The large
gap in performance (1.0 point for ID, 4.5 points for OOD) reflects the importance of fine-tuning with
distilled tuples. One interesting direction of future exploration could be modifying the fine-tuning
methodology (n-way of tuples, new ways of generating tuples, etc).
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