Extending the BERT Model to a Multitask Loss
Function Using Gradient Surgery

Stanford CS224N Default Project

Ali Lasemi
Department of Mechanical Engineering
Stanford University
alasemi@stanford.edu

Abstract

This paper presents an extension of the Bidirectional Encoder Representations
from Transformers (BERT) model through multitask fine-tuning. The model is
first pre-trained for the task of sentiment analysis, and then extended to multitask
learning by building task-specific heads on top of BERT. The tasks considered are
sentiment analysis, paraphrase prediction, and similarity prediction. The extension
proposed is a combined loss function incorporating losses from each task, which
is trained using the Gradient Surgery procedure. The data used for sentiment
analysis comes from the Stanford Sentiment Treebank (SST) and the CFIMDB
dataset, while Quora and SemEval STS Benchmark Dataset are used for paraphrase
prediction and similarity prediction, respectively. The results of the experiments
are still in progress.

1 Key Information to include

 External collaborators (if you have any): N/A
» External mentor (if you have any): N/A

* Sharing project: N/A

2 Introduction

In natural language processing, it is often desirable to be able to handle inputs and problems of
various types. Modern NLP systems are capable of solving a variety of user-specified problems,
instead of being specifically trained for a certain task. An example of this is the GPT-3 language
model (Brown et al., 2020). In general, this problem can be challenging since different NLP tasks
can be completely unrelated, so model weights trained for one task may not be useful for others.

In this work, the goal is to train an NLP model which is a capable of multitask learning. Specifically,
three tasks considered are sentiment analysis, paraphrase detection, and semantic textual similarity
(STS). The key ideas of the method are to start with a transformer-based pretrained model, and to
build task-specific heads on top of this model which can be trained with task-specific data. Instead of
training the heads separately, the heads will all be trained together using a combined loss function
along with a technique for avoiding conflicting gradients. This is described in more detail in Section

2]

3 Related Work

The Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al., 2018)) model
is an important example of a transformer-based pretrained model which can be built upon with
task-specific heads. BERT is trained on a large amount of unlabeled text, allowing it to generate a

Stanford CS224N Natural Language Processing with Deep Learning

hidden state representation which can then be passed on to other layers (designed for the specific
task) which can be trained separately. The advantage of this is that the BERT weights themselves do
not necessarily need to be trained, so training can be simplified to the more computationally efficient
task of training just the parameters in the task-specific heads.

Another important advancement used in this work is the concept of combining multiple loss functions,
and updating them using gradients that are modified with Gradient Surgery (Yu et al.| 2020). The
challenge with combining loss functions of unrelated tasks is that the gradients from these losses
can have components which are conflicting, which impedes the training and convergence. The
Gradient Surgery procedure subtracts the conflicting component of each task’s gradient, resulting in a
combined gradient which contains only the non-conflicting components.

4 Approach

The model being used is the Bidirectional Encoder Representations from Transformers (BERT)
(Devlin et al., 2018). For optimization, the Adam optimization algorithm will be used. First, the
model will be tested via pretraining for the specific task of sentiment analysis. Afterwards, to extend
the model to multitask learning, the pre-trained weights from the BERT model will be used as an
initial condition with which to train task-specific heads built on top of BERT. For this baseline model,
three tasks are considered. For the first task of sentiment analysis, the head considered will be to
take the embeddings from BERT, apply dropout, and then apply a linear layer to reduce the output
size to the number of sentiment classes. For both the second and third tasks of paraphrase prediction
and similarity prediction, the head structure is a weighted dot product. This involves computing the
embeddings of each of the two input sentences, applying dropout, then computing awb’, where @

and b are the two embeddings (post-dropout) and W represents the weights.

To train the task-specific heads that are built on top of BERT, the proposed extension to the model is
to train again with the BERT weights held constant, using a combined loss function which sums the
losses from each task.

Lotal = L5517 + Lpara + LsTs (1)

The combined gradients from summing the loss functions may contradict each other, so simply
summing the gradients is not the best solution. To improve this, the Gradient Surgery (Yu et al.| [2020)
procedure will be used to align the gradients together. This algorithm is summarized below, in a
slightly different order than the algorithm of the original authors, but with the same results.

1. Loop over each parameter 6y,

(a) Compute the gradients for each task-specific loss: Vg, Lsst, Vo, Lrara, Vo, LsTS
(b) Create copies: Vo, LS or, Vo, LD urar VoL LSTg
(c) Loop over the three original gradients, g;:

i. Loop over the copied gradients in random order, gj;:
A. Compute the similarity, s = g; - g
B. If the similarity is negative, then perform Gradient Surgery:

o - 995
Gi=Gi— “=2-; 2
|1gil 2

gi

One of the challenges with this implementation is that the above algorithm is applied to each
minibatch. Therefore, in order to have the three losses defined for each minibatch iteration, there
need to be an equal number of minibatches across all three tasks. This was handled by trimming
random examples from the datasets to reduce their size down to the smallest (which happens to be
the STS dataset).

The BERT implementation and Adam optimizer have been coded by the author, with a framework
provided by the CS224N course staff. The code for the multitask loss function and Gradient Surgery
are implemented by the author.

5 Experiments

This section begins by describing the datasets used. Next, the evaluation metrics for the model are
described. The experimental details and hyperparameter tuning will follow. The section concludes
with a report of the results of the model.

5.1 Data

The data being used for sentiment analysis comes from the Stanford Sentiment Treebank (SST)
(Socher et al., 2013) and the CFIMDB dataset. The SST dataset has 11,855 examples, and the
CFIMDB dataset has 2,434 examples. The data used for the paraphrase detection task is from Quora
(Quo)), and consists of 202,152 examples. Finally, the data used for STS task is the SemEval STS
Benchmark Dataset (Agirre et al.|[2013), and consists of 8,628 examples. The splits in the dataset are
given in Table[T]

Table 1: Dataset sizing and splits across train, dev, and test sets

| Training Set Examples Dev Set Examples Test Set Examples

SST Dataset 8,544 1,101 2,210
CFIMBD Dataset 1,701 245 488

Quora Dataset 141,506 20,215 40,431

SemEval STS Dataset 6,041 864 1,726

5.2 [Evaluation method

For the sentiment analysis task, the automatic evaluation metric will be the accuracy, since the
sentiment is either positive or negative. Likewise, for paraphrase detection, the evaluation metric will
still be accuracy for the same reason. For the STS dataset, the evaluation metric will be the Pearson
correlation of the similarity values on the test set.

5.3 Experimental details

First, the single-task BERT implementation is tested by training on the sentiment task. In this case,
a set of working hyperparameters was a batch size of 8, learning rate of 10~3 (when training from
scratch) or 1075 (when finetuning), a dropout probability of .3, and a hidden layer size of 768.
The model with the highest dev set accuracy out of all epochs was chosen as the best model. For
this simple single-task test, further searching of the hyperparameter space is not performed; this is
reserved for the multitask model.

In the multitask setting, the hyperparameter space is explored more thoroughly, and this was found
to have important effects on the result. The hyperparameters which are tuned are the batch size,
the learning rate, and the number of hidden layers in the multitask forward layer. With these three
hyperparameters, to truly find an optimal combination would require training N* models (where N
is the number of trials used for each hyperparameter). Since the model is expensive to train, this
is not efficient, so an alternative method is used where hyperparameters are tuned one at a time in
sequence, therefore requiring 3N models to be trained. All of the hyperparameter tuning is done with
Gradient Surgery enabled.

First, the batch size is tuned, with the learning rate held constant at 10~ and using one hidden layer
in the multitask forward layer. For the batch size, the focus is mainly on choosing the batch size that
is most efficient on the hardware accelerator being used (a NVIDIA A10G GPU from Amazon AWS),
since the batch size affects the amount of data processed by the GPU at once. Typically, larger batch
sizes are preferred in order to saturate the GPU as much as possible, but in testing it was found that a
batch size which is too large also has performance drawbacks. The test was performed by running
two epochs at various batch sizes, and averaging the compute time to get a cost per epoch. A table of
the timings from this test is given in Table 2] These results show that a batch size of 128 gives the
best performance on average, so a batch size of 128 is used for training moving forward.

With the batch size and number of hidden layers held constant, the next hyperparameter to be tuned
is the learning rate. Models are trained at various learning rates, and the results of this are shown

Table 2: Computational cost of training for various choices of batch size

Batch Size | Epoch 1 Time (s) Epoch 2 Time (s) Average Time (s)
32 109 108 108.5
64 99 99 99
128 95 94 94.5
256 96 96 96
512 97 96 96.5

in Table [3] These results show a large difference in the performance metrics between the lower
two learning rates versus the higher two learning rates. Even though the higher two learning rates
achieved good performance on the paraphrase detection task (over .6, compared to about .38 for the
lower learning rates), they performed worse on the other two tasks. Furthermore, the convergence of
the loss and performance metrics over epochs is found to be much slower at the two highest learning
rates, so in the interest of converging the model as fast as possible, the two highest learning rates are
discarded. Between the two lowest learning rates, the lowest rate of 5 x 10~ has better performance
on the metrics, so this learning rate is chosen for all models moving forward.

Table 3: Model performance metrics for various choices of learning rate

Learning Rate | Sentiment Accuracy Paraphrase Detection Accuracy STS Correlation
5x 1071 0.317 0.378 0.166
1x1073 0.297 0.379 0.122
2x 1073 0.262 0.626 0.059
5x 1073 0.262 0.627 0.034

The remaining hyperparameter is the number of hidden layers used in the multitask forward layer.
Models were trained using one, two, and three hidden layers, and the results are shown in Table E}
These results show that using more hidden layers improves the sentiment classification accuracy and
the STS correlation, and has a minor effect on the paraphrase detection accuracy. Therefore, the best
model used the most hidden layers, so moving forward the model will use three hidden layers in the
multitask forward layer.

Table 4: Model performance metrics for up to three hidden layers

Hidden Layers | Sentiment Accuracy Paraphrase Detection Accuracy STS Correlation
1 0.317 0.378 0.166
2 0.320 0.377 0.199
3 0.388 0.375 0.202

5.4 Results

For the first portion of this work, where the BERT implementation is tested with both pretraining and
finetuning, the results are shown in Table[5] As expected, for both datasets the results of finetuning
BERT result in a higher accuracy that pretraining the weights from scratch.

The baseline model uses the multitask heads implemented on BERT, as well as the multitask loss
function. The improved model is the same, but with the addition of Gradient Surgery. Both the
baseline and improved models use the optimal hyperparameters found earlier (batch size of 128,
learning rate of 5x 10, and three hidden layers in the multitask forward layer. The results comparing
these two are shown in Table[6] The result shows that Gradient Surgery improves the accuracy for
sentiment classification accuracy and STS correlation, and has no notable impact on paraphrase
detection. Since it was expected for the performance to improve on all tasks, this is considered to be
a partial success. The lack of improvement for paraphrase detection requires further investigation.
This may be because the majority of the information used for the paraphrase task is stored in the
paraphrase layer parameters, and not much information comes from the multitask forward layer.
Since the forward layer is the only one shared between the losses, only those parameters are affected

Table 5: Dev set accuracy for pretraining and finetuning BERT on the SST and CFIMBD datasets

\ Pretrain, SST Pretrain, CFIMDB Finetune, SST Finetune, CFIMDB
Dev Set Accuracy | 0.410 784 0.521 0.971

by Gradient Surgery. Finally, the results of the model with gradient surgery evaluated on the test set
are given in Table

Table 6: Dev set performance metrics on the three tasks for the baseline model and the improved
model with gradient surgery

| Sentiment Analysis Accuracy Paraphrase Detection Accuracy STS Correlation

Baseline Model 0.335 0.375 0.215
Gradient Surgery 0.388 0.375 0.202

Table 7: Test set performance metrics on the three tasks for the final model with gradient surgery

| Sentiment Analysis Accuracy Paraphrase Detection Accuracy ~ STS Correlation
Final (Gradient ‘ 397 .369 .193

Surgery) Model

6 Analysis

The results shown in Section [5.4] show that Gradient Surgery offers an improvement to the model in
terms of key performance metrics. From a qualitative standpoint, it is interesting to try to evaluate in
what situations it might make sense to use Gradient Surgery, and in what situations it is more or less
useful.

One way to build intuition for this is to repeat the analysis, but with a shallower forward layer in
the multitask layer. Repeating the analysis of Section [5.4] but with only one layer in the forward
results in the output shown in Table 8] The results are worse across the board (as expected from the
experimentation done earlier) but the important difference is that the gradient surgery has only a
small improvement in this case. For example, sentiment analysis only improved by .02 points when
Gradient Surgery was used, whereas with the optimal 3-layer model, sentiment analysis improved by
.053 points when Gradient Surgery was used. This makes sense qualitatively, because the forward
layer is the only layer shared between the three tasks, so only the parameters of the linear layer will be
affected by Gradient Surgery. A deeper forward layer will have more parameters and potentially more
opportunity to have conflicting gradients, so Gradient Surgery becomes more useful in this situation.
A shallow forward layer is less likely to overfit the gradients of the task-specific loss functions, and
therefore techniques such as Gradient Surgery may not provide as much of a benefit.

Table 8: Dev set performance metrics on the three tasks for the baseline model and the improved
model with gradient surgery, but using a shallower forward layer (one layer deep)

| Sentiment Analysis Accuracy Paraphrase Detection Accuracy STS Correlation

Baseline Model 0.297 0.378 0.157
Gradient Surgery 0.317 0.378 0.166

7 Conclusion

Summarize the main findings of your project, and what you have learnt. Highlight your achievements,
and note the primary limitations of your work. If you like, you can describe avenues for future work.

In this work, the challenges of designing a multitask NLP system were addressed, and a solution
strategy was explored. A BERT transformer model with task-specific heads was developed, and using
a combined multitask loss function with Gradient Surgery, the model was successfully trained. A
sequential survey of hyperparameters was conducted to optimally configure the model according to
the evaluation metrics.

In conclusion, the results show that a multitask loss can be successfully optimized using the Gradient
Surgery technique. For the final model presented, the Gradient Surgery algorithm improved the
evaluation metrics for two out of three tasks considered. Also, a qualitative study of the importance
of Gradient Surgery was conducted, which showed that gradient surgery is less useful when there
are few parameters shared between tasks. The primary limitations of the work are the relatively low
performance seen across the various models trained, which are likely due to parts of the dataset being
ignored (to appease a limitation in this work’s implementation of gradient surgery, which requires all
tasks to have the same number of batches). Directions for future work could include relaxing this
requirement to be able to do gradient surgery more effectively with imbalanced dataset sizes.

References

First quora dataset release: Question pairs. https://quoradata.quora.com/
First-Quora-Dataset-Release-Question-Pairs. Accessed: 2023-03-02.

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, and Weiwei Guo. 2013. *SEM 2013
shared task: Semantic textual similarity. In Second Joint Conference on Lexical and Computational
Semantics (*SEM), Volume 1: Proceedings of the Main Conference and the Shared Task: Semantic
Textual Similarity, pages 32-43, Atlanta, Georgia, USA. Association for Computational Linguistics.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language models are few-shot learners.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language understanding.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 1631-1642, Seattle, Washington, USA. Association for Computational Linguistics.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
2020. Gradient surgery for multi-task learning. In Advances in Neural Information Processing
Systems, volume 33, pages 5824-5836. Curran Associates, Inc.

https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://aclanthology.org/S13-1004
https://aclanthology.org/S13-1004
https://doi.org/10.48550/ARXIV.2005.14165
https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.48550/ARXIV.1810.04805
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://proceedings.neurips.cc/paper/2020/file/3fe78a8acf5fda99de95303940a2420c-Paper.pdf

	Key Information to include
	Introduction
	Related Work
	Approach
	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion

