Adjusting Dropout in Contrastive Learning of
Sentence Embeddings

Stanford CS224N Default Project

Guillermo Frontera Sanchez Maurice Georgi
Department of Computer Science Department of Computer Science
Stanford University Stanford University
frontera@stanford.edu maugeo@stanford.edu
Abstract

In our project, we implement the SimCSE and DiffCSE frameworks to improve
sentence embeddings for multiple downstream tasks. Also, we analyse if we
can improve the performance of SimCSE and DiffCSE by increasing dropout
probabilities in early blocks of the BERT model, in order to increase the ‘dropout-
as-data-augmentation’ effect of those frameworks. We are able to increase the
performance of our network by 10% compared to our baseline and demonstrate the
crucial role of preserving pre-trained features.

1 Introduction

In recent years, there have been many efforts devoted to learning universal sentence embeddings [[1].
Pre-training models that capture rich semantic information has proven to perform very well in many
NLP tasks by just adding one final output layer. Transformer architectures [2]] like BERT [3]] have
made significant progress in providing useful sentence embeddings without a need for labeled text. As
mentioned in [4], self-supervised learning (SSL) is one of the key ingredients in building transformer-
based pre-trained language models. Several SSL methods have been developed to improve sentence
embeddings, such as contrastive SSL. Contrastive SSL helps the model to learn by comparing
semantically related and unrelated sentences. Obtaining labeled data for those comparisons is costly,
whereas unlabeled data for NLP is available on large scales. Therefore, contrastive learning often
relies on unsupervised methods, using data augmentation to generate the model input. However, most
contrastive learning methods use discrete data augmentation (e.g., replacing one word for another)
and changing the input data in NLP can easily change the meaning.

In this project, we further pre-train a baseline BERT [3]] model (which has already been pre-trained
using a large corpus) with SimCS [5] and DiffCSE [6] to improve sentence embeddings for
three downstream tasks, namely sentiment analysis, paraphrase detection and semantic textual
similarity. SimCSE is an unsupervised approach that takes an input sentence and predicts itself
in a contrastive objective, with only standard dropout used as noise. DiffCSE builds on top of
SimCSE and additionally learns sentence embeddings that are sensitive to the difference between
the original sentence and an edited sentence. We specifically chose SimCSE and DiffCSE because
both algorithms claim to improve sentence embeddings in general, i.e., they improve alignment and
uniformity (alignment measures whether semantically similar sentence pairs are close together and
uniformity measures how uniform the sentence embeddings are distributed). These further pre-trained
networks are used as initialization for fine-tuning on all downstream tasks. In theory, a well-initialized
model can leverage the knowledge incorporated by the pre-training to improve performance on each
downstream task.

Also, we explore whether we can further improve SimCSE and DiffCSE by adjusting the dropout
masks. In both papers, dropout is viewed as a form of data augmentation when computing contrastive
loss. Normally, data augmentation is applied at the input level, i.e., the input is changed but nothing in
the network changes. In this case, the dropout layers create random perturbations in every Transformer

'If not stated otherwise, we refer to unsupervised SimCSE when citing SimCSE in this report.
Stanford CS224N Natural Language Processing with Deep Learning

block, producing different sentence embeddings even for the same input sentence. The authors in
both papers carefully searched for the best dropout probability hyperparameter, but applied the same
value throughout the model. We apply different dropout probabilities for each block depth, with
higher values at the earliest blocks and lower values at the final blocks, so that the data augmentation
caused by dropout perturbations is closer to the input layer.

2 Related Work

Good sentence embeddings can be used for many different NLP tasks. Recent approaches use
contrastive learning to fine-tune already pre-trained networks and improve the quality of sentence
embeddings. However, defining related pairs is not trivial. For visual tasks, applying random
transformations (e.g., cropping, resizing, or flipping) to images has demonstrated to be effective (see
[7]] as an example). In [8], they propose SImCLR where they use random transformations and use the
contrastive loss to pull representations of semantically similar augmented images closer together. A
similar approach called DeCLUTR [9], proposes a contrastive self-supervised algorithm that uses
overlapped spans as positive examples and distant spans as negative examples for learning contrastive
span representations. SimCSE solves the problem of creating related pairs by using dropout and
feeding the same input through the network twice. The DiffCSE framework extends this principle
by adding the Replaced Token Detection (RTD) task. This framework is heavily inspired by the
ELECTRA [10] model, in which RTD is used to pre-train model embeddings instead of fine-tuning
existing ones. In [11], a broad overview of existing contrastive pre-training methods in NLP is given.

In addition to the unsupervised SimCSE, a supervised version of SimCSE is proposed in the same
paper [S]. They use natural language inference (NLI) datasets to generate positive and negative
samples. Examples of positive samples include question-answer pairs, two captions of the same
image, and multiple translations for the same reference sentence.

3 Approach

Our pipeline is a two-stage process. For the first stage, we implement two contrastive learning
methods, SimCSE and DiffCSE, to improve the baseline BERT model embeddings. For the second
stage, we implement the multi-task classifier and fine-tune sentence embeddings for the three
downstream tasks.

3.1 Contrastive learning

The objective of contrastive learning is to make semantically related representations closer in the
embedding space, while pushing unrelated ones apart. To this end, a pre-trained model is fine-tuned
to learn to discriminate between pairs (z,z") of semantically related sentences (positive samples)
and pairs of unrelated sentences (negative samples). Finding a sufficient amount of positive and
negative samples is an important challenge. The unsupervised SimCSE framework [3] constructs
positive samples by feeding the same sentence twice (i.e., making z+ =) to the BERT encoder f to
receive sentence embeddings h = f () and h™ = f (z1). Note that despite = and ™ being equal,
the corresponding embeddings h and h™ are not, because dropout layers provide randomly different
masks in each forward pass. In this sense, dropout acts as a minimal form of data augmentation.
Negative samples are constructed from different sentences from the same batch. The training objective
for SimCSE is:

esim(hi,hj)/‘r

ey

Leontrast = — log -

Zj\f:1 651m(hi,h;.r)/7"
where N is the input batch size, sim(-, -) is the cosine similarity function, and 7 is a temperature
hyperparameter.

The DiffCSE framework [6] is a more recent approach, which builds upon SimCSE by combining
the regular contrastive 108S Lconrast 0 €quation with an additional loss term Lrtp. The loss Lrtp
results from fine-tuning the pre-trained encoder f to provide better embeddings for performing the
Replaced Token Detection (RTD) task.

Replaced Token Detection Loss

Contrastive Loss ?‘ original 01000 0 1
: replaced T T T T T T T
(r?sim(h,Ahf)/T

ZJ\:l esim(hihf)/7

Discriminator

i

[IB” “You gotta know what you're gonna do .]
Sentence Encoder 7y

[Generator (fixed)]

Random

Maski
[& “You never know what you’re gonna get . } v Lng»[aj,"You [MASK] know what you're gonna [MASK] .]

Figure 1: Illustration of DiffCSE obtained from [6].

Figure [T| provides an overview of DiffCSE. The left-hand side represents the standard SimCSE
algorithm as described in [3]]. The difference prediction model is on the right side. First, a random

mask m € {0, 1}M (where M is the length of sentence x) is used to generate ' = m - z. Then, a
pre-trained masked language model (MLM) is used as generator to predict masked tokens in 2’ and
obtain 2" = G (z'). Finally, a discriminator performs the RTD task, predicting whether each word in
the sentence has been replaced or not. With all the predictions, Lgrrp can finally be computed as:

N M

Lrtd = Z Z(—]l (a:"l(j) = ml(.j)) log D (z/,h,t) — 1 (a:"l(j) + xgj)) log (1 — D (2, h, t))),

i=1 j=1

, @)
where ml(.J) is the j-th word in «;, the i-th sentence in the batch; and D (-, -,) € [0, 1] is the output of
the discriminator. The final training objective for DiffCSE is £ = Leonyast + A - Lrrp, Where A is a
hyperparameter.

For our implementation of DiffCSE, we use our own generator and discriminator, which are both
built on top of the baseline BERT model.

3.2 Adjusting dropout

Although the authors of both SimCSE and DiffCSE were thorough in their search for the best dropout
probability, there are no studies, to the best of our knowledge, that analyse the effect of having
different dropout probabilities in different blocks of the BERT model. In the remainder of this report,
we will refer to a combination of different dropout probabilities at different blocks as a dropout mask.
In our work, we focus on the effect of dropout masks that increase probabilities at the early blocks of
the model, to increase the ‘dropout-as-data-augmentation’ effect.

3.3 Multi-task classifier

The classifier uses a pre-trained BERT model to obtain the sentence embeddings provided by the
pooler. We then add a different head for each of the three downstream taskﬂ For sentiment classi-
fication, this head outputs five features, using a softmax function to determine the probabilities for
each class. For both paraphrase detection and similarity prediction, the heads take the concatenation
of the sentence embeddings for both sentences as input, and provide a single output each. In the case
of paraphrase detection, this output is provided to a sigmoid function to compute the likelihood. In
all three heads, the number of hidden layers is a hyperparameter.

We consider two different fine-tuning settings. In the first setting (full fine-tuning), we randomly
initialize the classifier heads and then train all parameters of the network simultaneously. In the
second setting (classifier training then full fine-tuning), we first freeze the pre-trained BERT backbone
to only train the heads, and then unfreeze the BERT backbone and fine-tune all parameters.

*In our notation, a head may comprise more than just one linear layer.

The baseline for our analysis and improvements is the provided pre-trained model fine-tuned on all
three downstream tasks. Also, we will compare our method improvements —i.e., using adjusted
dropout masks— to the original methods trained with the same dropout probability for all Transformer
blocks.

4 Experiments

4.1 Data

For fine-tuning and pre-training with SimCSE and DiffCSE we use the following four datasets: The
Stanford Sentiment Treebank (SST) [12] consists of 11,855 single sentences from movie reviews
with 5 different sentiment categories. The dataset is divided into 8,544 train, 1,101 dev and 2,210
test examples. The CFIMDB dataset consists of 2,434 highly polar movie reviews. The dataset is
divided into 1,701 train, 245 dev and 488 test examples. The Quora dataseﬂ consists of over 400,000
question pairs and each question pair is annotated with a binary value indicating whether the two
questions are a paraphrase of each other. The dataset is divided into 141,506 train, 20,215 dev and
40,431 test examples. The SemEval STS Benchmark (STS) dataset [13]] consists of 8,628 different
sentence pairs of varying similarity. The dataset is divided into 6,041 train, 864 dev and 1,726 test
examples. A specific description of how the datasets are used for pre-training and fine-tuning is given
in section4.3l

4.2 Evaluation method

Our main evaluation objective is to test the network on the development splits of the SST dataset for
sentiment analysis, the Quora dataset for paraphrase detection, and the SemEval dataset for semantic
textual similarity.

Besides the main evaluation objective, we analyse how changing the dropout probability for different
layers affects the alignment and uniformity of our embeddings after pre-training with SImCSE
and DiffCSE. Alignment and uniformity are two measures to identify key properties related to
contrastive learning and were proposed by [14]]. Alignment measures whether positive pairs are close
together in the embeddings space, and is calculated as follows (assuming the outputs of f are already
normalized):

galign = K ||f($) - f(TJr)H2

2,2) ~Ppos

Uniformity measures how uniform the distribution of all embeddings is, and is calculated as follows:

Luniform = log ~ E e_2Hf($)_f(y)H2'

LY~ Pdata

In theory, good embeddings should align positive pairs and the embeddings should be evenly
distributed in the embedding space.

4.3 Experimental details

As stated before, our training pipeline consists of two stages. First, we pre-train the baseline BERT
model with SImCSE or DiffCSE, and then we fine-tune the model on the three downstream tasks.
For pre-training and fine-tuning we use the AdamW optimizer with 3; = 0.9 and 32 = 0.999.

Pre-training A suitable dataset for pre-training a model with either SimCSE or DiffCSE is assem-
bled by combining all sentences in the SST, CFIMDB, Quora and STS datasets. For the Quora and
SST datasets, which have two sentences for every data point, each of the sentences is treated as an
independent sampleﬂ We exclude sentences with more than 200 words to be able to use larger batch
sizes and handle computational limits.

3https ://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs

“Note here that the two sentences of those data points can be very similar to each other. In theory, this could
lead to a negative effect in the contrastive loss function [5] when two similar sentences are used as negative
instances. But as we randomly pick sentences for each batch and the total number of sentences (~ 300K) is
large enough, this effect is marginal.

https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs

Trans. block1 | 0.2 0.3 04 05 02 03 04 05 05 04 03 0.2

Trans. block2 | 0.2 03 04 05 02 03 04 05 04 03 02 0.1

Trans. block3 | 0.2 03 04 05 02 03 04 05 03 02 01 0.1

Trans. block4 | 0.2 03 04 05 02 03 04 05 02 0.1 0.1 0.1

Trans. block5 | 0.1 0.1 01 01 02 03 04 05 01 01 01 0.1

Trans. block6 | 0.1 0.1 01 01 02 03 04 05 0.1 0.1 0.1 0.1
Table 1: Dropout probabilities applied to each Transformer block (smaller numbers refer to earlier
blocks in the network). All other blocks not listed in the table have dropout probability 0.1.

Paraphrase detection Similarity prediction

[Dense + Sigmoid] | Dense |
I I
Sentiment classification ‘ Dropout ‘ ‘ Dropout ‘
Dense + Softmax
[Dense + GELU| [Dense + GELU|
i i
[Dropout | [Dropout |
Dislite < CIELY [Dense + GELU| [Dense + GELU|

Sentence ei’nbeddings

T
N

BERT
&=
) i

\ Sentlence /
*

Figure 2: Architecture of multi-task classifier used for fine-tuning on all three downstream tasks.

We pre-train the baseline BERT implementation with SimCSE, with no additional heads and making
no modifications to the network. For SImCSE we use the best-performing hyperparameters in [3]:
we train with a batch size of 64, a learning rate of 3 x 102, and a temperature parameter 7 of
0.05. Instead of training for one epoch as in [3]], we train for two epochs to compensate for our
smaller dataset. We use a dropout probability of 0.1 for all layers as a baseline, and then run several
experiments with different dropout masks. See Table [I|for all tested masks. Masks 1 to 4 change
the dropout probability of the first four Transformer blocks, while masks 5 to 8 adjust the dropout
probabilities of the first six Transformer blocks to analyse if changing more blocks makes a difference.
Finally, masks 9 to 12 gradually decrease the dropout probability in the first blocks to analyse if a
smoother transition is beneficial. We only apply mask 1-4 and 9-12 for DiffCSE due to computational
limits.

For the discriminator and the generator of DiffCSE, we use the same BERT model used for the
sentence encoder. For the generator, we freeze the BERT model and train the generator head on the
pre-training dataset for 20 epochs. For this training, we use a batch size of 64 and a learning rate of
10~2. For DiffCSE pre-training, we use the same hyperparameters as for SimCSE. In this case, we
use A = 0.005 for the loss, as in [6]. As for SImCSE, we train with a dropout probability of 0.1 as
baseline and then compare this to different dropout masks.

Fine-tuning For fine-tuning the network on the three downstream tasks, we use their respective
datasets: SST, Quora, and STS. The multi-task classifier is depicted in Figure 2l The number of
hidden layers for each of the classifier heads is the combination that performs best after tuning (see
section[A.T]for details).

Model PD Accuracy STS Correlation SST Accuracy Average
Baseline BERT 0.829 0.546 0.510 0.628
SimCSE Baseline 0.807 0.552 0.501 0.620
SimCSE Mask 1 0.815 0.406 0.484 0.568
SimCSE Mask 2 0.822 0.519 0.502 0.614
SimCSE Mask 3 0.825 0.492 0.499 0.605
SimCSE Mask 4 0.819 0.519 0.510 0.616
SimCSE Mask 5 0.822 0.509 0.510 0.614
SimCSE Mask 6 0.819 0.520 0.494 0.611
SimCSE Mask 7 0.818 0.530 0.482 0.610
SimCSE Mask 8 0.833 0.508 0.494 0.612
SimCSE Mask 9 0.828 0.494 0.481 0.601
SimCSE Mask 10 0.826 0.485 0.475 0.595
SimCSE Mask 11 0.824 0.572 0.488 0.628
SimCSE Mask 12 0.795 0.461 0.510 0.589
DiffCSE Baseline 0.813 0.472 0.456 0.580
DiffCSE Mask 1 0.805 0.561 0.486 0.617
DiffCSE Mask 2 0.822 0.525 0.484 0.610
DiffCSE Mask 3 0.835 0.480 0.467 0.594
DiffCSE Mask 4 0.815 0.582 0.492 0.630
DiffCSE Mask 9 0.822 0.542 0.478 0.614
DiffCSE Mask 10 0.786 0.545 0.497 0.609
DiffCSE Mask 11 0.814 0.476 0.511 0.600
DiffCSE Mask 12 0.804 0.492 0.507 0.601

Table 2: Experimental results for full fine-tuning on the development splits. The best results for each
metric are highlighted.

To fine-tune on all three datasets, we draw a batch from one of the three datasets at each iteration
and use it to train the appropriate head. Since the Quora dataset is much larger than the other two
datasets, we add a balancing factor so that for every 17 batches of the Quora dataset we draw 2
batches of the SST dataset and 4 batches of the SemEval dataset. We use cross entropy loss for
sentiment classification, binary cross-entropy loss for paraphrase detection and mean squared error
for similarity prediction. We update the parameters after each batclﬂ

As previously described in section we consider two different fine-tuning settings: full fine-tuning,
and classifier training then full fine-tuning.

We performed extensive hyperparameter tuning to achieve the best results when performing full
fine-tuning on the baseline BERT model. Results of this analysis can be found in section We
achieve the best performance using a batch size of 32, a learning rate of 3 x 1075, a weight decay of
102 and a hidden dropout probability of 0.2. We use these tuned hyperparameters for full fine-tuning
on all models pre-trained with SimCSE or DiffCSE to measure the effect of additional pre-training.
We train for 10 epochs and report the numbers for the checkpoint with the best average performance.

For classifier training then full fine-tuning, we also perform some hyperparameter tuning, although
not as extensive as with full fine-tuning (mainly due to time constraints). During classifier training,
we use the same parameters as in full fine-tuning: a learning rate of 3 x 107>, a weight decay of
10~2 and a dropout probability of 0.2. Then, during full fine-tuning, we use the same parameters
except for the learning rate, which becomes 1075,

4.4 Results

Table 2| shows the results for full fine-tuning. The average best performance is achieved by DiffCSE
with mask 4. That being said, the difference between the best-performing model and the baseline
BERT model is marginal. In general, the performance of all models is very similar and we cannot see
a clear benefit of contrastive learning when using full fine-tuning.

Table [3| shows the results of classifier training then full fine-tuning. The best performance is achieved
by SimCSE with mask 5 and improves the performance by over 10% compared to the baseline
BERT model. For classifier training then full fine-tuning, the effect of doing additional pre-training
compared to the baseline BERT model is clearly measurable for SimCSE and DiffCSE. All models

SWe also try adding losses of multiple batches to optimize a mutual loss for all three tasks but don’t receive
better results.

Model PD Accuracy STS Correlation SST Accuracy Average
Baseline BERT 0.829 0.542 0.500 0.624
SimCSE Baseline 0.855 0.793 0.520 0.723
SimCSE Mask 1 0.865 0.790 0.495 0.717
SimCSE Mask 2 0.865 0.788 0.499 0.717
SimCSE Mask 3 0.866 0.790 0.505 0.720
SimCSE Mask 4 0.865 0.792 0.496 0.718
SimCSE Mask 5 0.864 0.805 0.509 0.726
SimCSE Mask 6 0.867 0.791 0.505 0.721
SimCSE Mask 7 0.861 0.807 0.501 0.723
SimCSE Mask 8 0.864 0.791 0.494 0.716
SimCSE Mask 9 0.864 0.800 0.504 0.723
SimCSE Mask 10 0.865 0.797 0.493 0.718
SimCSE Mask 11 0.867 0.794 0.490 0.717
SimCSE Mask 12 0.864 0.790 0.492 0.715
DiffCSE Baseline 0.850 0.773 0.509 0.711
DiffCSE Mask 1 0.857 0.776 0.501 0.711
DiffCSE Mask 2 0.855 0.777 0.502 0.711
DiffCSE Mask 3 0.856 0.784 0.496 0.712
DiffCSE Mask 4 0.855 0.784 0.513 0.717
DiffCSE Mask 9 0.852 0.777 0.526 0.718
DiffCSE Mask 10 0.859 0.789 0.500 0.716
DiffCSE Mask 11 0.860 0.795 0.501 0.719
DiffCSE Mask 12 0.860 0.801 0.512 0.724

Table 3: Experimental results for classifier training then full fine-tuning on the development splits.
The best results for each metric are highlighted.

Model PD Accuracy STS Correlation SST Accuracy Average

SimCSE Mask 5 0.860 0.702 0.511 0.691
Table 4: Experimental results on the test splits for the overall best-performing model on the develop-
ment splits.

with additional pre-training achieve better average performance, mostly due to the paraphrase
detection and semantic textual similarity tasks, where performance increases significantly. This aligns
with our expectations. SimCSE and DiffCSE should have a positive effect on paraphrase detection
and semantic textual similarity as better alignment and uniformity should help the model to capture
the relationship of two sentences better. For sentiment analysis we only observe marginal or no
improvements by doing pre-training.

Although the best performance for both pre-training methods is achieved with a specific dropout
mask compared to the respective baselines, we don’t observe any significant benefit by changing
the dropout masks in general. In fact, the opposite seems to be the case. The performance of both
methods seems to be robust to the choice of the dropout masks.

Our submission to both the test and dev set leaderboards corresponds to the model pre-trained using
SimCSE and dropout mask 5, using classifier training then full fine-tuning. The scores obtained in
the test leaderboard is shown in Table @4l

5 Analysis

Our experiments show that the training procedure plays an important role in the success of SImCSE
and DiffCSE. Only when doing classifier training and then fine-tuning we see a significant impact
of SimCSE and DiffCSE. When directly fine-tuning all parameters of BERT, the further pre-trained
features of the backbone seem to get erased in the process. The reason for that can be that the
randomly initialized heads lead to large gradients that get propagated through the network. By doing
classifier training first, gradients might be smaller and already existing features are preserved.

To better understand why SimCSE and DiffCSE improve the performance in the case of classifier
training then full fine-tuning we analyse alignment and uniformity. Figure [3|shows alignment and
uniformity of all pre-trained networks we use for our experiments.

0.401 * SImCSE Baseline
e DIiffCSE Baseline
0.35 .. » SimCSE
0.301 *o% Pre-trained
o ; e DiffCSE
g 0.25 22
£ *
§0.20
<
0.15
0.10
0.05
0.00 T - - .
-3 -2 -1 0
Uniformity

Figure 3: Visualization of alignment and uniformity of SimCSE and DiffCSE compared to the
pre-trained network. Each marker in the plot corresponds to one experiment run with a specific
pre-training and dropout mask.

Model PD Accuracy STS Correlation ~ SST Accuracy Average
SimCSE Baseline Wikipedia 0.862 0.792 0.503 0.719
DiffCSE Baseline Wikipedia 0.858 0.745 0.457 0.687

Table 5: Experimental results for classifier training then full fine-tuning with Wikipedia data on the
development splits.

To calculate both metrics we use the development split of the STS dataset. In [5]] they observe that
uniformity of sentence embeddings improves with SimCSE while alignment stays constant (smaller
values are better for both metrics). We can only reproduce the improvement of uniformity for SimCSE
and DiffCSEﬂ We also train SimCSE with the same Wikipedia sentences used in [3]] and [6], but
receive similar values for uniformity and alignment as for our training dataset. We assume that our
pre-trained network has low alignment and high uniformity compared to the pre-trained network used
in [3)] and [6], and that this explains the difference. Also, we receive similar values for alignment
and uniformity after applying SimCSE and DiffCSE as reported in [5], which hints that SimCSE and
DiffCSE create a certain level of uniformity and alignment.

Also, we analyse if changing the training data for pre-training with SimCSE and DiffCSE has an
impact on the performance. Table [5|shows the results using the same Wikipedia data that is used in
[S] and [i6] for pre-training. For SimCSE we achieve similar performance as with our data. DiffCSE
with the Wikipedia data used for pre-training performs slightly worse than using our data. This might
be because using our data for pre-training already involves data from the target domain, but a more
thorough analysis is needed to measure the exact effect of the data used during pre-training.

In general, we don’t see a significant benefit of DiffCSE compared to SimCSE in our experiments.
The performance of DiffCSE is (among other things) dependant on the generator that is used. A more
thorough analysis is needed to test different generators and the effect on the performance of DiffCSE.

6 Conclusion

Our analysis shows that further pre-training using SimCSE and DiffCSE can significantly improve the
performance of BERT on multiple downstream tasks. We achieve 10% better average performance
over all three downstream tasks compared to our baseline. We find out that the training procedure
plays a crucial role in utilizing the additional knowledge that is incorporated into the model by pre-
training with SimCSE and DiffCSE. Training the task-specific heads before fine-tuning all parameters
enables the model to preserve the improved features of SimCSE and DiffCSE. Also, in our analysis,
the pre-training methods are robust against changes in the dropout masks. Contrary to [5], SimCSE
and DiffCSE only improve uniformity of sentence embeddings independent of the training data,
showing that these observations depend on the already pre-trained network used for both methods.
We also show the effect of the training data used for both methods and that the choice of training data
affects the performance of DiffCSE.

*Note that we use the same dataset to evaluate uniformity and alignment as in [5]] and [6].

References

(1]

(2]

(3]

(4]

(51

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic Barrault, and Antoine Bordes. Super-
vised learning of universal sentence representations from natural language inference data. In
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing,
pages 670—680. Association for Computational Linguistics, September 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, Long Beach, United States, December 2017. Curran Associates,
Inc.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pages 4171-4186, Minneapolis,
Minnesota, June 2019. Association for Computational Linguistics.

Katikapalli Subramanyam Kalyan, Ajit Rajasekharan, and Sivanesan Sangeetha. AMMUS: A
survey of transformer-based pretrained models in natural language processing, August 2021.
arXiv:2108.05542 [cs].

Tianyu Gao, Xingcheng Yao, and Danqi Chen. SimCSE: Simple contrastive learning of sentence
embeddings. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pages 6894—-6910, Punta Cana, Dominican Republic, May 2022. Association for
Computational Linguistics.

Yung-Sung Chuang, Rumen Dangovski, Hongyin Luo, Yang Zhang, Shiyu Chang, Marin
Soljac¢i¢, Shang-Wen Li, Wen-tau Yih, Yoon Kim, and James Glass. DiffCSE: Difference-
based contrastive learning for sentence embeddings. In Proceedings of the 2022 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pages 4207-4218, Seattle, United States, July 2022. Association for
Computational Linguistics.

Alexey Dosovitskiy, Jost Tobias Springenberg, Martin A. Riedmiller, and Thomas Brox.
Discriminative unsupervised feature learning with convolutional neural networks. CoRR,
abs/1406.6909, 2014.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In Proceedings of the 37th International
Conference on Machine Learning, pages 1597-1607. JMLR.org, July 2020.

John M. Giorgi, Osvald Nitski, Gary D. Bader, and Bo Wang. Declutr: Deep contrastive learning
for unsupervised textual representations. CoRR, abs/2006.03659, 2020.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. ELECTRA:
Pre-training text encoders as discriminators rather than generators. In Proceedings of the Sth
International Conference on Learning Representations, April 2020.

Nils Rethmeier and Isabelle Augenstein. A primer on contrastive pretraining in language
processing: Methods, lessons learned, and perspectives. ACM Computing Surveys, 55(10):1-17,
February 2023.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew
Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a
sentiment treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, pages 1631-1642, Seattle, Washington, USA, October 2013. Association
for Computational Linguistics.

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, and Weiwei Guo. *SEM
2013 shared task: Semantic textual similarity. In Second Joint Conference on Lexical and
Computational Semantics (*SEM), Volume 1: Proceedings of the Main Conference and the
Shared Task: Semantic Textual Similarity, pages 32—43, Atlanta, Georgia, USA, June 2013.
Association for Computational Linguistics.

[14] Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through
alignment and uniformity on the hypersphere. In Proceedings of the 37th International Confer-
ence on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages

9929-9939. PMLR, July 2020.

A Appendix

A.1 Hyperparameter tuning

In order to optimize the performance of our model on the three downstream tasks, we conduct an
exhaustive hyperparameter tuning process. We evaluate a range of hyperparameters including the
learning rate, batch size, dropout probability, L2 weight decay, dataset ratios, classifier depth, and
loss weights. The dataset ratios determine how frequently we sample from each dataset relative
to the others, while the classifier depth refers to the number of layers applied on top of the pooler
layer, with separate values for paraphrase detection, similarity prediction, and sentiment analysis (the
first value refers to the number of layers we apply on top of the pooler layer for all tasks). The loss
weights indicate the degree to which each loss is prioritized relative to the others. The outcomes of
this hyperparameter tuning process are presented in Table [6]

LR BS DP WD DSratios Classifier depths Loss weights — Avg. score
3x107° 16 03 1072 1742 0000 111 0.540
3x107® 16 0.3 1072 1742 0110 111 0.604
3x107° 16 0.3 1072 1742 0220 111 0.614
3x107° 16 0.3 1072 1742 0330 111 0.595
3x107® 16 0.3 1072 1742 0440 111 0.553
3x107° 32 0.3 1072 1742 0000 111 0.549
3x107° 32 0.3 1072 1742 0110 111 0.593
3x107° 32 0.3 1072 1742 0220 111 0.605
3x107° 32 03 1072 1742 0330 111 0.598
3x107® 32 0.3 1072 1742 0440 111 0.595
3x107° 32 0.3 1072 1742 0120 111 0.603
3x107° 32 03 1072 1742 1120 111 0.580
3x10™° 32 0.3 0 1742 0220 111 0.610
3x107° 32 0.3 1073 1742 0220 111 0.612
3x107® 32 03 0.1 1742 0220 111 0.600
3x107° 32 0.3 1 1742 0220 111 0.577
3x107% 32 0.3 10 1742 0220 111 0411

10~° 32 03 1072 1742 0220 111 0.572

1074 32 03 1073 1742 0220 111 0.310
3x107° 32 0.1 1073 1742 0220 111 0.621
3x107% 32 0.2 10732 1742 0220 111 0.628
3x107° 32 02 1078 1742 0220 111 0.617
3x107° 32 04 1073 1742 0220 111 0.584
3x107% 32 05 1073 1742 0220 111 0.606
3x107° 32 02 1073 1742 0220 1103 0.622
3x107® 32 02 1073 1742 0220 110.1 0.568
3x107° 32 02 1073 1744 0220 111 0.602
3x107° 32 02 1073 3544 0220 111 0.613
3x107% 32 02 1073 3534 0220 111 0.605
3x107° 32 02 1073 3532 0220 111 0.610

Table 6: Hyperparameter tuning results on the development splits. Best parameter combination is
highlighted. LR = learning rate; BS = batch size; DP = dropout probability; WD = weight decay;
DS ratios = dataset ratios; Avg. score = mean score of paraphrase detection, sentiment analysis and

similarity prediction.

10

	Introduction
	Related Work
	Approach
	Contrastive learning
	Adjusting dropout
	Multi-task classifier

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion
	Appendix
	Hyperparameter tuning

