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Abstract

Contrastive learning objectives have shown great promise in achieving state-of-
the-art performance metrics in various natural language processing (NLP) tasks.
Contrastive learning provides two main benefits: first, it effectively augments the
available data, which is often sparse, and second, it adds an additional learning
objective that can aid in learning more robust representations. In this report,
an unsupervised Ansatz for contrastive learning is employed by applying two
different dropout masks on the same example, creating positive example pairs
[1]. Additionally, a novel supervised contrastive learning approach is explored
by defining examples from the SST-5 dataset with the same sentiment labels as
positive pairs. While initially thought to only benefit sentiment classification tasks,
it is observed that this approach is also beneficial for other tasks. However, when
fine-tuning on transfer tasks, most of the benefits from contrastive learning are lost.
Furthermore, a novel technique for augmenting available datasets with ChatGPT is
investigated, which entails certain risks of overfitting and elimination of inherent
biases in the dataset. The proposed extensions on top of the uncased BERT base
model yields results comparable to those of state-of-the-art methods for the SST-
5, STS, and QQP datasets individually, with scores of 0.526, 0.869, and 0.873,
respectively. Furthermore, the multi-task model, capable of performing all of these
tasks concurrently, attained scores of 0.520, 0.868, and 0.858 for the SST-5, STS,
and QQP tasks.

1 Key Information to include
• Mentor: Drew Kaul
• External Collaborators (if you have any): None
• Sharing project: None

2 Introduction

It has been six years since the development of the first transformer model [2] and five years since the
infamous BERT paper [3] that demonstrated the potential of transformers. Although the transformer-
encoder model BERT has been greatly outperformed by newer and larger models [4, 5, 6], it is
nevertheless of great importance for academia because it is conceptually simple and serves as playing
ground for many explorative studies. It is also of great pedagogical value as it can be trained on
affordable GPUs making it accessible for students and even interested laymen.

Given the aforementioned benefits of BERT, such as conceptual simplicity and computational
feasibility, this model was chosen as the foundation for the CS224N default project. The goal of

Stanford CS224N Natural Language Processing with Deep Learning



the default project is to build a multitask classifier on top of the uncased BERT base model that is
able to perform well on three tasks simultaneously, a sentiment classification task using the Stanford
Sentiment Treebank (SST-5) dataset [7], a paraphrase detection task based on the Quora question
pairs dataset (QQP) [8], and a regression task based on the SemEval STS dataset (STS) [9]. The
difficulty here comes from the fact, that all of these tasks differ in terms of task type (classification
vs. regression), number of classes, domains and dataset size. The state-of-the-art results for the
given downstream tasks are as follows: 59.8% accuracy for SST-5-51, 92.4% accuracy for the quora
paraphrase dataset2, and 92.9% Pearson correlation for STS3. Note however, that these results were
obtained using significantly larger models and therefore a comparison to the results presented here
are not fair. Also, it is generally harder to train a multi-task model that performs well on many tasks
instead of fine-tuning one single tasks specifically.

In this project report various improvements will be attempted to score well on all tasks simultane-
ously but one special focus will be set on contrastive sentence embeddings (CSE). Concretely, the
contributions in this report are summarized as follows:

• Implementation of an unsupervised contrastive learning method following Ref. [1].

• Implementation of a supervised contrastive learning objective using sentiment class labels.

• Augmenting the SST-5 and STS datasets using ChatGPT3.5.

• Comparing different multi-task learning strategies, in particular, sequential learning and
joint task learning

• Exploring various hyperparameter optimizations

3 Related Work

Contrastive learning has gained significant attention in recent years due to its success in various
domains, particularly in computer vision [10, 11]. It has been demonstrated that contrastive learning
can lead to robust representations by maximizing the similarity between semantically similar data
points while minimizing the similarity between dissimilar data points. Recently, the field of NLP
has followed suit and started to apply contrastive learning to natural language processing tasks, with
promising results, see also the excellent primer by Rethmeier and Augenstein [12].

The foundation of this project is predominantly influenced by Ref. [1]. In that paper, the authors
introduced an innovative and remarkably simple unsupervised contrastive learning objective by
applying two distinct dropout masks to the same input sentence and defining the resulting two
embeddings as positive pairs. This learning objective directly benefits text similarity tasks, such as
those based on the STS datasets, without the need for explicit fine-tuning. They call their approach
"Simple Contrastive Learning of Sentence Embeddings" (SimCSE), which in this report will also be
referred to as SimCSE.

4 Approach

As outlined in the introductory section of this report, this variant of the default project aims to
leverage contrastive methods to enhance the performance of the baseline BERT model for the tasks
specified in Table 1. To this end, the uncased BERT base model4 was provided, which has 12 layers
with 12 attention heads each and a hidden size of 768, resulting in 110M parameters. The context
length is 512 tokens. Increasing the deepness and hidden size of the model is usually considered
the most promising approach for improving the performance on downstream tasks. In this report
however, it was attempted to squeeze out as much as possible from the base model without changing
its fundamental architecture.

In the following, the several steps on developing the multitask-classifier model are elaborated.

1https://paperswithcode.com/sota/sentiment-analysis-on-sst-5-fine-grained
2https://paperswithcode.com/sota/paraphrase-identification-on-quora-question
3https://paperswithcode.com/sota/semantic-textual-similarity-on-sts-benchmark
4https://huggingface.co/bert-base-uncased
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Figure 2: During training the dropout masks are randomized, i.e., two same input sentences will
yield slightly two different embeddings in the forward passes. These embedding pairs represent the
positive pairs in the unsupervised SimCSE learning objective.

Figure 1: Visualization of the classification strat-
egy for two input sentences. Figure taken from
Ref. [13]

Implementation of transfer tasks. As shown
in Table 1 the QQP, SST-5 tasks are both classi-
fication tasks with 2 and 5 classes, respectively.
However, both tasks differ with respect to the
input.

While SST-5 consists of single sentences that
can be directly classified, the QQP contains of
two questions per example and thus need to be
concatenated first before being able to be classi-
fied. The concatenation strategy (u, v, |u− v|)
was chosen, where u and v are the encodings for
the two questions. The reason for this concate-
nation is simply that best results were reported
in Ref. [13] for this concatenation.

The STS task also consists of two input sen-
tences per example and the goal is to determine
the similarity between them. For this task, con-
catenation is not needed as the similarity of the
input sentences can be directly computed using
the cosine-similarity metric. We also multiply
the output of the cosine-similarity by five in or-
der to match the regression scale of the origin STS dataset.

Unsupervised contrastive learning. Using the unsupervised SimCSE method of Ref. [1] the goal
is to improve the base model such that it leads to better sentence embeddings by aligning them and
making them more uniform. The method comprises of generating positive sentence pairs by applying
dropout twice on the same input sentence leading to slightly different embeddings. The objective is
then simply minimizing
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sentence. sim is the cosine similarity, and τ a temperature hyperparamter. Note that in practice these
two different dropout masks are obtained by simply doing two forward passes on the BERT base
model during training. See Fig. 2 for an illustration of this method.

A reason why unsupervised SimCSE works is that it makes the representations more uniform
in embedding space while not degrading with respect to alignment. It is known that pre-trained
word embeddings tend to suffer from anisotropy [14, 15], which is somewhat ameliorated using
unsupervised SimCSE. Alignment here is defined as follows:

ℓalign ≜ E
(x,x+)∼ppos

||f(x)− f(x+)||2 , (2)

where f(x) is the embedding obtained by a forward pass through the encoder and (x, x+) are positive
example pairs sampled from a distribution of positive pairs ppos. On the other hand, uniformity is
defined as

ℓuniform ≜ log E
(x,y) i.i.d.

e−2||f(x)−f(y)||2 . (3)

Both of these objectives correlate with the objective of contrastive learning, namely that positive
instances should be close while random embeddings should be uniformly distributed in order to
preserve maximal information [16].

In contrast to Ref. [1] where 1e6 sentences from Wikipedia were used to fine-tune the model, here 1e6
examples from the Openwebtext dataset [17] were taken. The rationale behind this is that sentences
from Wikipedia are associated with a specific, more formal writing style, while the Openwebtext
dataset is more broad in terms of topics and writing style. In addition to that, a masked language
modeling (MLM) objective is supplemented during the fine-tuning of SimCSE embeddings in order
to prevent catastrophic forgetting of token-level knowledge which might hurt performance on transfer
tasks.

Figure 3: Visualization of the supervised
contrastive learning process. The differ-
ent colors correspond to different senti-
ment class labels.

Sentiment-based Supervised contrastive learning. Ini-
tially, the intention was to implement the supervised Sim-
CSE objective of [1], which consists of leveraging natural
language inference datasets and defines positive examples
as those that both are classified as "entailment" and nega-
tive pairs as those with the "contradiction" label. However,
here I wanted to primarily improve the SST-5 task score
because I felt there is more potential as the difference of
my baseline (0.49) to the SOTA results (0.60) is quite large
(0.11). The idea thus was to use the training datasets for
the SST-5 task and define examples with the same class
label as positive and examples with different class labels
as negatives. This idea was also inspired by Ref. [18]. The
effect on the embeddings during training is illustrated in
Fig. 3.

Multi-task learning. As a first Ansatz, a sequential
multi-task model was employed. This model simply learns
one task after another. This is not the most sophisticated
approach, however, for the purpose here it serves as a
baseline. Also, this approach better reveals in what way
different tasks lead to positive or negative transfer. In
this project it has been observed, that the STS and QPP
tasks do not affect each other by much, but that these tasks
interfere destructively with the SST-5 task. That means
training SST-5 leads to negative transfer and forgetting
with the STS and QPP tasks and vice versa.
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Figure 4: The full pipeline

Subsequently, we also develop a joint learning strategy, by which all tasks are trained simultaneously.
This is done by batch-wise backpropagating on the sum of the losses for the three transfer tasks like
so:

Ltotal = wSST-5 LSST-5 + wSTS LSTS + wQQP LQQP , (4)

where the coefficients of the losses are weights that enables the priorization of the tasks. These are
subject to hyperparameter tuning.

Training pipeline. This project involves multiple components, leading to multiple combinations
that can be studied. To obtain the final result submitted to the test and dev leaderboards, the
following steps were employed: First, the small uncased BERT base model was finetuned based
on the unsupervised contrastive learning objective, using 1e6 randomly sampled examples from
the openwebtext dataset. Subsequently, the finetuned model checkpoint was used to train using the
supervised contrastive learning objective. As direct joint multitask learning encountered difficulties
in finding a minimum where all tasks had comparatively good scores, sequential fine-tuning was used,
followed by joint multi-task fine-tuning, as this yielded a better starting point for the joint multi-task
model. Fig. 4 presents an overview of the steps.

5 Experiments

5.1 Data

For the experiments on the downstream tasks, the datasets listed in Table 1 were employed.

Table 1: Tasks and corresponding datasets. "Cl." stands for classification and "Reg." for regression.
The number in the brackets denotes the number of classes for the classification or the range for
regression, respectively.

Task Type Dataset Examples Refs.
Sentiment Analysis Cl. (5) Stanford Sentiment Treebank (SST-5) 11,853 [7]

Paraphrase Detection Cl. (2) Quora question pairs dataset (QQP) 202,157 [8]
Semantic Textual Sim. Reg. (0-5) SemEval STS Dataset (STS) 8,630 [9]

In addition to the provided data, additional data has been generated by using the ChatGPT API for
the SST-5 and STS tasks. The rationale for this approach is two-fold: First, the datasets are quite
imbalanced, QQP has ten times as many examples than SST-5 and STS combined. Augmenting these
datasets makes the tasks more balanced during training. Second, the expectation is that extending
the datasets with different sentence structures leads to more robust sentence embeddings. For more
details on the augmentation process, please refer to App. A.2.

5.2 Evaluation method

For the classification tasks the evaluation consists of simply calculating accuracies. For the STS
regression task, the Pearson correlation was used, which is a linear correlation measure between two
sets of data and is defined as follows:

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
, (5)
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where n is the sample size, xi are the model predictions and yi are the correct labels.

5.3 Experimental details

For all experiments, MEAN pooling was used to obtain the sentence embeddings as it produced
the best results. The base learning rate for all experiments is 10−5 and the dropout rate is 0.1.
These values were only changed to achieve the final results in Table 5, based on the best values
identified through hyperparameter optimization (see Appendix A.1). The batch size was set to 48
for all experiments, except for those in Section 5.4.3, which used a batch size of 8 due to hardware
constraints on my local equipment. All training sessions, except for the experiments in 5.4.3, were
conducted on an AWS EC2 instance with an NVIDIA A10G graphics card. The training was carried
out over the course of two epochs for all experiments.

5.4 Results

5.4.1 Baselines

Table 2: Results from the milestone report here serve as baseline. Here sequential multitask learning
was employed.

Development set scores
Method SST-5 QPP STS
Base BERT w/o finetuning 0.118 0.625 0.489
Base BERT w/o finetuning w/ unsup. CSE 0.125 0.621 0.489
Multitask-BERT w/ finetuning 0.489 0.780 0.854
Multitask-BERT w/ unsup. CSE w/ finetuning 0.463 0.866 0.807

In Table. 2 we report the preliminary results that were obtained in the milestone report. These results
will serve as baselines for the following experiments and results.

5.4.2 Contrastive learning

As previously mentioned, 1e6 randomly sampled examples from the Openwebtext dataset are used to
finetune the BERT base model according to the unsupervised contrastive learning objective defined
in Eq. 1. In Fig. 5 we present the alignment and uniformity scores defined in Eqs. 2 and 3 as well
as the STS scores during training. Although the STS score is not the target of the training process,
its corresponding loss is the cosine similarity, which improves with the unsupervised contrastive
learning objective.

Fig. 5 reveals that the STS score improves initially but then degrades slowly during training, likely
due to the supplemented MLM objective that hurts the STS task performance. This observation aligns
with previous work, such as Ref. [1], which reported similar results in Table 5. Note that the STS
dataset provided is actually the STS-12 dataset.5

It can be seen from Fig. 5 that the STS score improves very quickly initially, but then degrades slowly
during training. This is presumably due to the supplemented MLM objective that hurts the STS task
performance. This was also observed in Ref. [1], see Table D.2 in that reference.

For the sentiment-based supervised variant, a similar result was obtained. However, the MLM training
objective was not supplemented. The major difference is that the similarity score for the STS task
decreased to approximately 0.5 during training. The resulting effect of this contrastive learning
variant is best seen when finetuning on the transfer tasks, as shown in Table 3.

5https://huggingface.co/datasets/mteb/sts12-sts
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Figure 5: Training of the unsupervised contrastive sentence embeddings. Note that align_pos
corresponds to Eq. 2 and align_neg is an additional metric that I introduced, that shows the alignment
to negative pairs. An increasing align_neg score means that negative examples align worse, i.e.,
their distances in embedding space increase. Some dips occur during training hinting at catastrophic
forgetting, which may happen when training on large datasets.

5.4.3 Results for isolated tasks

Experiment SST-5 STS QQP
Base model .507± .007 .864± .003 .856± .003
Base model w/ augmented dataset .512± .007 .867± .002 -
Unsupervised CSE .509± .008 .865± .003 .857± .003
Unsupervised CSE w/ augmented dataset .511± .009 .866± .002 -
Supervised CSE .522± .006 .862± .001 .873 ± .001
Supervised CSE w/ augmented dataset .526 ± .007 .869 ± .001 -

Table 3: Average SST-5 scores and standard deviations for different BERT transformer model fine-
tuning experiments. For each experiment, the model ran 10 times using different seeds. For the
experiments without the augmented/extended dataset two epochs per run were trained while with
the augmented dataset only one epoch was used in order to compensate for the different sizes of the
datasets. For the QQP dataset, due to expensive computation, only one epoch per run and five runs
per experiment were conducted.

In order to evaluate whether the laid out multi-task model enabled positive or negative transfer, results
for each isolated task will be presented. That means, the model has been finetuned to each task
separately. Another advantage of this approach is that it better evaluates which modifications were
beneficial for each specific task.

Interestingly, it was observed that pretraining using the unsupervised contrastive learning objective
did not lead to significant improvements on the transfer tasks. This is not due to the contrastive
method itself not working, but rather because its beneficial effects are washed out after fine-tuning
on the transfer tasks. As shown in Figure 5, the STS score improves with unsupervised CSE alone,
but unfortunately, this improvement does not translate to any improvements after fine-tuning on the
transfer tasks.
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5.4.4 Results for the Multi-Task model

Here the results for three different variants of multi-task models are presented. The best results for
each variant are reported in Table. 4. For all variants augmented datasets were used.

Experiment SST-5 STS QQP
Sequential .498± .011 .843± .019 .841± .033
Joint .451± .021 .863± .015 .817± 0.019
Sequential → Joint .509 ± .008 .865 ± .003 .857 ± .003

Table 4: All models start from the supervised SimCSE checkpoint that was trained earlier. The
statistics is derived from 5 runs per experiment.

The best result that was obtained and submitted to the leaderboard is as follows:

Dataset Averaged Score SST-5 STS QQP
Test 0.743 0.518 0.855 0.855
Dev 0.749 0.520 0.868 0.858

Table 5: the best results were obtained by initially training sequentially for two epochs, followed by
training jointly for two epochs.

In order to obtain the best results hyperparameter tuning using the hyperparameter tuning tool
weights&biases, see Fig. 6 for the particular sweep. Note that these results are slightly worse than the
individual records seen in Table. 3 meaning there was slight negative transfer between the different
tasks that I could not fully mitigate.

6 Analysis

Contrastive sentence embeddings. In Fig. 3, the principle on how embeddings align themselves in
embedding space when training using a contrastive learning objective is shown, which explains why
the sentiment-based supervised CSE should improve the baselines. This is here proven empirically
by The align_neg and align_pos plots in Fig. 5.

Surprisingly, the non-sentiment tasks were not negatively affected by the sentiment-based supervised
CSE model; in fact, it even improved their performance as shown in Table 3. By learning to distinguish
between similar and dissimilar sentence pairs based on sentiment labels, the BERT model may have
learned to focus on more salient features of the input sentences. It could also be that the model has
learned to encode the underlying sentiment similarity or difference between the sentence pairs. For
example, if two questions have the same sentiment, it is more likely that they are paraphrases.

Multi-task learning. Comparing Table 3 with Table 4 it becomes immediately evident, that the
multi-task model was not able to find a shared representation for all tasks without compromises. The
most likely reason for this is the limited capacity of the BERT base model. A larger model would
enable more task-specific specialization without overwriting crucial weights for other tasks.

Additionally, it was observed that sequential finetuning is susceptible to overfitting, whereas training
on all tasks simultaneously has a regularization effect. Simultaneously training a model on multiple
tasks encourages it to learn a shared input representation that benefits all tasks. This necessitates the
model’s capacity to generalize well across various tasks, rather than just overfitting to one.

Dataset augmentation. I did expect the effect of augmenting the datasets to be higher. The reason
why this did not as well as hoped is probably two-fold: Augmenting the data the specific way I did
with ChatGPT does not create a more diverse dataset and just more of the same. Moreover, adding
more generated examples could potentially result in a drop in performance due to overfitting if the
generated examples become too similar, which is something I observed when adding even more
generated examples. Secondly, the datasets may have inherent biases that are a product of their
creation process, and ChatGPT may not have replicated these biases.
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7 Conclusion

One of the main realizations of this project is the observations, that a combination of improvements are
not always constructive to each other when done sequentially. For instance, although the unsupervised
CSE method resulted in improved STS scores and satisfactory uniformity and alignment metrics, the
difference from the baseline after fine-tuning on transfer tasks was very small. It is possible that my
strategy of building up the model sequentially, as depicted in Fig. 4, was suboptimal and simply led
to overwriting previously trained weights. However, I suspect that with a slightly larger model the
benefits of the changes implemented here would be more visible but unfortunately I decided early not
to focus on increasing the model size.

References
[1] Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence

embeddings. arXiv preprint arXiv:2104.08821, 2021.

[2] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[4] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

[5] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[7] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew
Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a
sentiment treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, pages 1631–1642, Seattle, Washington, USA, October 2013. Association
for Computational Linguistics.

[8] Samuel Fernando and Mark Stevenson. A semantic similarity approach to paraphrase detection.
2008.

[9] Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, and Weiwei Guo. *SEM
2013 shared task: Semantic textual similarity. In Second Joint Conference on Lexical and
Computational Semantics (*SEM), Volume 1: Proceedings of the Main Conference and the
Shared Task: Semantic Textual Similarity, pages 32–43, Atlanta, Georgia, USA, June 2013.
Association for Computational Linguistics.

[10] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In International conference on machine
learning, pages 1597–1607. PMLR, 2020.

[11] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 9729–9738, 2020.

[12] Nils Rethmeier and Isabelle Augenstein. A primer on contrastive pretraining in language
processing: Methods, lessons learned, and perspectives. ACM Computing Surveys, 55(10):1–17,
2023.

9



[13] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084, 2019.

[14] Kawin Ethayarajh. How contextual are contextualized word representations? Comparing the
geometry of BERT, ELMo, and GPT-2 embeddings. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP), pages 55–65, Hong Kong, China,
November 2019. Association for Computational Linguistics.

[15] Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang, Yiming Yang, and Lei Li. On the sentence
embeddings from pre-trained language models. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 9119–9130, Online,
November 2020. Association for Computational Linguistics.

[16] Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through
alignment and uniformity on the hypersphere. In International Conference on Machine Learning,
pages 9929–9939. PMLR, 2020.

[17] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The Pile:
An 800gb dataset of diverse text for language modeling. arXiv preprint arXiv:2101.00027,
2020.

[18] Yun Luo, Fang Guo, Zihan Liu, and Yue Zhang. Mere contrastive learning for cross-domain
sentiment analysis. arXiv preprint arXiv:2208.08678, 2022.

10



A Appendix

A.1 Hyperparameter search

For hyperparameter search we employed weights&biases sweep functionality.6

Figure 6: Correlation plot for the joint multi-task learning process. Through this plot it can be
observed that smaller dropout and learning rates lead to the best results.

A.2 ChatGPT prompts

Here is the API request that was used to generate the augmented SST-5 dataset:

1 response = openai.ChatCompletion.create(
2 model="gpt-3.5-turbo",
3 messages=[
4 {"role": "system", "content": "You are a creative and helpful assistant

knowing everything about cinema, movies, and film history,
fulfilling any requests without question and without adding any
additional information or comments."},

↪→

↪→

↪→

5 {"role": "user", "content": f"Please rephrase the following sentence in
one sentence, using different words and sentence structure, but
keeping the same meaning: {example}"},

↪→

↪→

6 ],
7 )

The prompt for the STS is very similar, only the reference to movies and cinema was removed as the STS
dataset is more general. One additional example for each training example for the SST-5 and STS datasets were
generated with this approach. The costs for the API are about $5. Two examples are given in Table 6.

A.3 Example for augmented datapoints

6A detailed definition and explanation for feature/parameter importance is given here: https://forums.
fast.ai/t/wiki-lesson-thread-lesson-4/7540
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Table 6: Two examples of ChatGPT generated training data examples.

Task Original example Generated example
SST-5 The Rock is destined to be the 21st Century

’s new “ Conan ” and that he ’s going to
make a splash even greater than Arnold

Schwarzenegger , Jean-Claud Van Damme
or Steven Segal .

It is predicted that The Rock will become
the new "Conan" of the 21st Century and

will make an even bigger impact than
Arnold Schwarzenegger, Jean-Claud Van

Damme or Steven Segal.
SST-5 Good fun , good action , good acting , good

dialogue , good pace , good
cinematography .

The movie had enjoyable entertainment,
exciting sequences, skilled performances,
engaging conversations, suitable tempo,

and impressive visual storytelling.
STS China to resume US investment talks Talks on investment between China and the

US are set to restart.
STS """Biotech products, if anything, may be

safer than conventional products because
of all the testing,"" Fraley said, adding that
18 countries have adopted biotechnology."

Fraley stated that due to extensive testing,
biotech products may actually be safer than

conventional products and he also
mentioned that biotechnology has been

adopted by 18 different countries.
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