
swissBERT: A Ready-to-Use Multitask Transformer
Stanford CS224N Default Project

Yixin Liu∗

Stanford University
yixinliu@stanford.edu

Tom Shen∗

Stanford University
tomshen@stanford.edu

Violet Yao∗
Stanford University
vyao@stanford.edu

Abstract

In this paper, we propose swissBERT, a multi-task learning approach that builds on
BERT and incorporates several extensions, including direct encoding of sentence
pairs, automatic weighted loss, cosine similarity loss, gradient surgery, biased task
sampling, and weight sharing. We first demonstrate the effectiveness of minBERT
in transfer learning for downstream tasks on sentiment analysis datasets through
individual fine-tuning. We then extend minBERT to simultaneously perform
three different downstream tasks using multitask fine-tuning, including sentiment
analysis, paraphrase detection, and semantic textual similarity. Our experiments
show that direct encoding of sentence pairs and auto weighted loss are highly
effective extensions that consistently improve the model’s performance across
tasks. Our experiments demonstrate an overall dev accuracy of 0.754 and an overall
test accuracy of 0.758 on the leaderboard.

1 Key Information to include

• Mentor: Manasi Sharma

• External Collaborators (if you have any): None

• Sharing project: None

2 Introduction

Pre-training and fine-tuning of large language models, such as BERT [1], have proven to be effective
for various Natural Language Processing (NLP) tasks. However, these models have limitations,
including the need for task-specific fine-tuning and the inability to effectively perform multiple
tasks simultaneously. Multi-task learning has emerged as a promising approach to overcome these
limitations, by enabling models to jointly learn from multiple tasks with potentially conflicting
objectives without sacrificing performance. In this paper, we propose swissBERT, a multi-task
learning approach that builds on the effectiveness of BERT and incorporates several extensions,
including cosine similarity loss by Reimers et al.[2], gradient surgery by Yu et al. [3], automatic
weighted loss by Liebel et al.[4], layer sharing, direct encoding of sentence pairs similar to the method
used by the Next Sentence Prediction (NSP) pretraining task in BERT [1].

This report is organized as follows. In Section 3, we review related work on pre-training, fine-tuning,
and multi-task learning for NLP tasks, highlighting their limitations and inspirations. In Section 4,
we present the details of our approach, including the modifications to BERT and the extensions we
introduced. In Section 5, we discuss our experimental setup, including the datasets and evaluation
metrics. Our model achieves an overall dev accuracy of 0.754 and an overall test accuracy of 0.758
on the leaderboard. We then present a qualitative analysis of our model in Section 6, demonstrating
the effectiveness of swissBERT on sentiment analysis task (SST), paraphrase detection task (Para),
and semantic text classification task (STS), while also identifying potential areas for improvement.
Finally, in Section 7, we conclude by summarizing our contributions and discussing future directions
for research.

Stanford CS224N Natural Language Processing with Deep Learning



3 Related Work

The authors of the BERT paper [1] introduced a novel approach for pretraining language models,
which has since become a reliable backbone of many downstream NLP tasks. Our work builds on
this approach by leveraging the effectiveness of BERT in transfer learning for downstream tasks. One
key contribution of BERT that inspired swissBERT was its unambiguous representation of a pair of
sentences in a single token sequence, which we utilized when implementing the prediction head for
the paraphrase detection and semantic text similarity tasks. Unlike BERT, our multitask model does
not require fine-tuning for each downstream task separately, making it more efficient and effective for
simultaneously performing multiple tasks.

Several prior works have explored transfer learning and multi-task learning in various domains,
including computer vision. Yu’s Gradient Surgery approach [3] performed multi-task learning on
computer vision tasks and introduced a technique to resolve conflicts in gradients, which we have
adopted as an extension in our work. Similarly, Liebel’s work on Auxiliary Tasks in Multi-task
Learning [4] also performed multi-task learning on computer vision tasks and introduced automatic
weighted loss for different tasks, which we have adopted in our final model. In the field of NLP,
Reimers’ Sentence-BERT model [2] utilized BERT to detect the similarity of two sentences, which is
also a task supported by our model. We used the Sentence-BERT model without cosine-similarity as
our baseline, as it is easy to implement. However, Sentence-BERT has limitations in that the words in
one sentence cannot attend to another sentence, which limits its performance. Additionally, it is not a
multi-task model, unlike our approach which simultaneously performs multiple NLP tasks.

4 Approach

In this project, we aim to build a multitask BERT model that can simultaneously perform sentiment
analysis, paraphrase detection, and semantic text similarity.

4.1 Baseline

BERT. To accomplish this, we first build and train a BERT model using the default architecture
described in the BERT paper [1], which includes self-attention, multi-head attention, and transformer
encoder layers. We add a prediction head for sentiment analysis, which includes a linear layer and
sigmoid output. This concludes part 1 of the default final project handout.

Multitask BERT. For multitask BERT, each of the three tasks has its own prediction head, but they
all share the same BERT parameters. We adapt the multitask training pipeline described in Peng et al.
[5]. During training, we create a heterogeneous dataset by merging minibatches of each task. Then,
for each iteration, we sample each task without replacement, selecting the corresponding prediction
head based on the task of the current minibatch, computing the loss, and updating the model. To
ensure that each task is considered roughly the same number of times during training, we implement
early stopping for each epoch if all examples from any one task have been traversed. We take the
pooled output of BERT embeddings for each task and feed them to its prediction head.

For paraphrase detection and semantic text similarity, we concatenate the BERT embeddings for each
sentence in the sentence pair and feed them to a linear layer. The paraphrase detection task uses a
sigmoid output, while the semantic text similarity task outputs logits that we convert to a scale from
0 to 5. For sentiment analysis, we use a dropout layer, a linear layer, and a softmax layer for the
prediction head.

Multitask BERT Baseline. To establish a baseline for our multitask BERT model, we freeze the
BERT backbone weights and only update the parameters of the prediction head. By doing so, we
want to determine how much performance gain we could achieve by fine-tuning the entire BERT
model rather than simply treating the BERT embeddings as an input feature. This allows us to gauge
the effectiveness of our multitask learning approach and determine the potential benefit of updating
the BERT weights during training.

4.2 Extensions

We explored several non-trivial extensions to our baseline, each with its own benefits and drawbacks.

2



Direct Encoding of a Sentence Pair (Pair Encoding). To encode the information from two sentences
in a single token sequence, we adopt a similar approach as the NSP task of the BERT paper [1].
Specifically, we concatenate the two sentences in the pair with a special [SEP] token, and assign
a unique token type ID to each sentence. We modify the starter code to allow our BERT model
to take token IDs as input and directly encode a sentence pair. This approach enables the BERT
model to effectively capture the interactions between the words in both sentences, which can improve
the performance of downstream tasks such as paraphrase detection and semantic text similarity.
Additionally, this method reduces the computational overhead of fine-tuning BERT, as it allows
us to run BERT once for each sentence pair rather than once for each sentence separately. After
encoding the sentence pair, we pass the pooled BERT embedding through a linear layer followed
by an appropriate output layer (either softmax or identity) for each task. We find that this approach
significantly improves the performance of our model on all three tasks.

Automatic Weighted Loss. In the Multitask BERT baseline, we backpropagate loss per task batch.
However, the losses for each task may vary in scale and may require adjustments in relative weighting
during training. Manually tuning these weights is an expensive process. To address this limitation,
we experiment with a linear weighted sum of losses for each task, where task weights are made
learnable. However, this approach poses an issue because the model may trivially decrease the loss
by decreasing all task weights. In practice, it would be less extreme than converging to zero since
the learning rate is small, and we are not training for long epochs. We then implement multitask
learning with homoscedastic uncertainty, which refers to a task-dependent uncertainty with respect
to information that our data cannot explain and varies between tasks. Formally, homoscedastic
uncertainty loss is given by

∑
i

1
σ2
i
Lossi + log

∏
i σi, where i denotes each task, and σi represents

the noise parameter for the target variable yi. As σi increases, the weight 1
σ2
i

for task i decreases, so
it can be seen as learning the relative confidence between tasks. The objective also depends on the
task’s representation or unit of measure, as 1

σ2
i

is scaled by Lossi. Regularization of σi by the term
log

∏
i σi prevents the noise from increasing too much. This objective is well-formed, ensuring that

task weights will not converge to zero. In practice, to avoid numerical instability, we directly model
the log variance log(σ2

i ) instead of σi. We further experiment with automatic weighted loss [4],
which improves homoscedastic uncertainty by preventing the loss from becoming negative during
training. Formally, automatic weighted loss is given by

∑
i

1
2σ2

i
Lossi + log(1 + σ2

i ). To account for
potential differences in the optimal learning rates of task weight parameters and model parameters
during training, we introduce the option for learnable task weights to have a distinct learning rate
from model parameters. We find that a larger learning rate for task weights than model parameters is
more effective in practice. This approach results in consistent enhancements in performance across
tasks.

Gradient Surgery During the training process, the direction of gradients for each task may be
different, introducing instability in training. In this approach, we experimented with the Gradient
Surgery technique[3], which projects the gradient gi of each task i onto the normal plane of the
gradients gj of other conflicting tasks j, using the formula gi = gi − gi·gj

∥gj∥2 gj . This extension can be
combined with any other extensions we implemented.

Biased Task Sampling. In our initial approach, for each gradient update, we obtain one batch from
each task, resulting in a total of one batch for SST, one for Para, and one for STS. However, we
observed that some tasks are more challenging to train. For instance, the training error for the Para
task is relatively high, indicating underfitting. To address this issue, we design a biased task sampling
method. For each gradient update, we randomly sample tasks according to a biased distribution,
assigning greater weight to more difficult tasks. For example, it is possible to have two batches of
the Para task and one batch of the SST task in a single gradient update. Despite these adjustments,
our experimental results show that the method is not highly effective and leads to a trade-off in the
performance of tasks with smaller weights.

Cosine-Similarity Fine-Tuning. First introduced in SentenceBERT [2], this alternative prediction
head computes the cosine similarity between sentence pair embeddings for the paraphrase detection
and semantic text similarity tasks. Note that this extension only works if we feed each sentence to a
BERT model separately, meaning we do not tokenize a sentence pair directly. Instead of concatenating
the embeddings and feeding them to a linear layer, we calculate the cosine similarity between them and
utilize CosineEmbeddingLoss. This approach enables us to better capture the semantic relationship
between sentences in these specific tasks, leading to improved model performance.

3



Weight Sharing. In this original approach, we let each prediction head have two linear layers with
a Leaky ReLU instead of one layer. Then, we share the weights of the first linear layer for the
paraphrase and semantic text similarity tasks.

In our investigation, we have explored numerous extensions for enhancing the performance of our
multi-task learning model. However, in our final model for the leaderboard, we have only incorporated
direct encoding of sentence pairs and automatic weighted loss as key components. An architecture
diagram detailing these specific features is provided in the appendix, as shown in Figure 5. These
selected extensions have proven to be most effective in improving the model’s overall performance
across the various NLP tasks under consideration.

5 Experiments

5.1 Data

In part 1, we perform movie review sentiment classification on the SST[6] and CFIMDB datasets.
SST has five categories, with the somewhat negative and somewhat positive categories having a
larger number of training examples. CFIMDB is a binary classification task with a balanced label
distribution. For Part 2, we train a multitask swissBERT model on the SST, Quora1, and STS[7]
datasets. Label distribution is presented in Figure 4 in Appendix. Quora is a binary classification
task for paraphrase detection, while STS is a semantic textual similarity task. Since Quora has
significantly more training examples than SST and STS, the model may become biased towards
learning paraphrase detection if we traverse all the training examples during multitask training.

5.2 Evaluation method

We employ different loss functions and evaluation metrics for each specific task. For the classification
problems, such as Sentiment Analysis and Paraphrase Detection, we use cross-entropy loss during
training and accuracy as the evaluation metric. An exception is made for the cosine similarity
extension of the paraphrase detection task, where we compute the CosineEmbeddingLoss between
the embeddings of the two sentences output by the BERT backbone. For the regression problem
of Semantic Textual Similarity task, we use Mean Squared Error as the loss function and Pearson
correlation as the evaluation metric. We evaluate the overall performance by averaging the evaluation
metric of three tasks to calculate the overall dev score.

5.3 Experimental details

For part 1 sentiment classification on CFIMDB and SST dataset, we conducted two experiments
using pretrain and finetune options. In the first experiment minBERT (pretrain), we froze the loaded
BERT parameters during training. The model was trained for 10 epochs with a learning rate of 1e-3,
batch size of 64, and dropout probability of 0.3. In the second experiment, we used the finetune
option, enabling the updating of all parameters in the model. The model was trained for 10 epochs
with a learning rate of 1e-5, batch size of 64, and dropout probability of 0.3. Model performance is
reported in Table 1.

To evaluate the Multitask-BERT and its extensions, we performed twelve experiments with different
model settings: Baseline Multitask-BERT (pretrain), Multitask-BERT with no extensions (finetune),
Multitask-BERT with different combinations of extensions, including layer sharing, cosine similarity,
pair encoding, learnable weights, homoscedastic uncertainty, automatic weighted loss, gradient
surgery, sample task. All experiments shared the same training configuration of 20 training epochs,
batch size of 32, learning rate of 1e-5, dropout probability of 0.3, and weight decay of 0. For the
model with sample task extension, the weight is set to sst = 1, para = 1.7, sts = 1. All models
used the finetune option except the baseline model which used pretrain option. The performance on
the dev set is presented in Table 2.

After the experiments with different extensions, we selected the pair encoding extension and automatic
weighted loss extension since their combination achieves the best overall score on the dev set. To
further improve the model performance, we conduct hyperparameter tuning to search for the optimal

1https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs

4



learning rate, dropout probability, weight decay, and automatic weighted loss learning rate (AWL
LR). We perform 7 experiments with different hyperparameters. All experiments shared the same
training configuration of 20 training epochs and a batch size of 32. All models used the finetune
option and pair encoding and automatic weighted loss extensions. The performance on the dev set is
presented in Table 3.

5.4 Results

The performance of minBERT on Sentiment Classification is presented in Table 1, and it is comparable
to the accuracy reported in the project handout.

Table 1: minBERT Dev Accuracy for Sentiment Classification.
SST Acc CFIMDB Acc

minBERT(pretrain) 0.391 0.788
minBERT(finetune) 0.518 0.967

Table 2 shows the performance of Multitask swissBERT with different extensions, where all models
using the finetune option outperform the baseline model using pretrain parameters. By allowing
the updating of parameters in both the prediction head and BERT, the fine-tuned models are better
adapted to the three tasks, leading to better performance compared to the baseline. The layer sharing
extension shares a fully connected layer between the paraphrase task and semantic textual similarity
task, which slightly improves the performance of paraphrase prediction. However, since it reduces
the number of parameters in the model, its overall performance falls behind that of the finetune
model with no extension. In the cosine similarity extension, we experimented with a prediction head
that uses simple cosine similarity computation without neural network layers. Unfortunately, the
limitation in expressiveness is reflected in the experiment results. The Multitask-BERT model with
only the pair encoding extension significantly boosted the dev score, as presented in Table 2, and we
retained this extension for all subsequent experiments. This extension allowed each sentence to attend
to the other in the same pair, increasing the model’s expressiveness and improving performance in
sentence pair prediction tasks. However, incorporating learnable weights, homoscedastic uncertainty,
gradient surgery, or sample task extension on top of the pair encoding extension did not result in a
significant improvement in performance. For instance, gradient surgery might not have improved
performance because conflicting gradients were not a significant issue between the three tasks we
trained on. Among all the experiments, the pair encoding and automatic weighted loss extension
achieved the highest overall score. The automatic weighted loss extension weighed multiple loss
functions by considering the homoscedastic uncertainty of each task and prevented the loss from
becoming negative during training, facilitating the training process. Therefore, we selected this model
for further hyperparameter tuning.

Table 2: Performance of swissBERT with Different Extensions.
Extensions SST Acc Para Acc STS Corr Overall Score
Baseline: no extension(pretrain) 0.334 0.649 0.267 0.417
no extension(finetune) 0.508 0.755 0.492 0.585
layer sharing 0.500 0.756 0.464 0.573
cosine similarity 0.482 0.506 0.463 0.484
pair encoding 0.506 0.855 0.842 0.734
pair encoding, learnable weights 0.510 0.847 0.848 0.735
pair encoding, homoscedastic uncertainty 0.500 0.855 0.846 0.734
pair encoding, auto weighted loss(awl_lr=1e-5) 0.508 0.862 0.849 0.740
pair encoding, gradient surgery 0.503 0.837 0.843 0.728
pair encoding, gradient surgery, learnable weights 0.503 0.837 0.842 0.727
pair encoding, gradient surgery, auto weighted loss(awl_lr=1e-4) 0.510 0.850 0.851 0.737
pair encoding, sample task, auto weighted loss(awl_lr=1e-4) 0.495 0.865 0.841 0.734

Table 3 shows the result of hyperparameter tuning. We found that the combination of a learning rate
of 1e-5, dropout probability of 0.3, weight decay of 1e-5, and automatic weighted loss learning rate

5



of 1e-4 achieves the highest overall dev score of 0.747. This is a slight improvement over the default
hyperparameters, which resulted in an overall dev score of 0.740.

Table 3: Hyperparameter Tuning Experiments for swissBERT
LR Dropout Weight Decay AWL LR SST Acc Para Acc STS Corr Overall Score
1e-5 0.3 0 1e-5 0.508 0.862 0.849 0.740
1e-4 0.3 1e-5 1e-4 0.467 0.862 0.834 0.721
1e-5 0.3 1e-5 1e-4 0.525 0.849 0.868 0.747
1e-5 0.3 1e-4 1e-3 0.501 0.861 0.875 0.746
1e-6 0.3 1e-5 1e-4 0.489 0.788 0.793 0.690
1e-5 0.5 1e-5 1e-4 0.507 0.851 0.842 0.733
1e-5 0.1 1e-5 1e-4 0.517 0.854 0.848 0.740

We achieve the best overall score on the dev set by incorporating a learning rate scheduler into
swissBERT model. We submitted the predictions to the dev and test leaderboard and obtained the
performance in Table 4.

Table 4: swissBERT Performance on Dev/Test Leaderboard
Dev Leaderboard Test Leaderboard

Overall Score SST Acc Para Acc STS Corr Overall Score SST Acc Para Acc STS Corr
0.754 0.510 0.883 0.868 0.758 0.527 0.885 0.862

6 Analysis

In this analysis section, we present a comprehensive examination of our swissBERT performance
on the SST, Para, and STS tasks. By scrutinizing the model’s strengths and weaknesses, we aim to
understand its underlying capabilities and limitations, offering valuable insights for future research
and improvement.

SST Task. Our model works well on reviews that convey a clear and explicit sentiment. The model
has correctly identified negative reviews that use phrases like "meaningless downer", "load of junk",
and "hackneyed message". Positive reviews that have been correctly identified contain language such
as "remarkable camerawork", and "deliriously funny".

True: 0, Pred: 0
Sentence: i got a headache watching this meaningless downer.

On the other hand, the model is struggling with reviews that use more complex language, where
the sentiment is more ambiguous. The phrase "glorious failure" is a contradiction in terms, as it
suggests that the movie is both a failure and something to be admired or celebrated. This type
of language can be challenging for models to interpret because it requires a deeper understanding
of the context to disambiguate, such as the case of "Solaris" being considered a failure by other
critics. Nuanced language adds to the difficulty in accurately classifying sentiment, as it requires
understanding specific connotations. Our model also struggles with reviews that discuss multiple
aspects of the movie with varying sentiments, such as the second review, which praises the film’s
technique and ideas while simultaneously criticizing it for its lack of substance or content to be a
good movie overall.

True: 4, Pred: 2
Sentence: if steven soderbergh’s ‘solaris’ is a failure it is a glorious failure.

True: 3, Pred: 1
Sentence: So much facile technique, such cute ideas, so little movie.

6



Para Task. Our model effectively recognizes paraphrases when sentence pairs exhibit similar
structures, contain common keywords, or use synonyms to express the same idea. Additionally, it
accurately differentiates non-paraphrased sentence pairs when they address distinct aspects, even
when sharing common keywords. For example, both sentences below relate to Hillary Clinton but
focus on entirely different aspects. Our model successfully identifies this distinction.

True: 0, Pred: 0
Sentence 1: What made Hillary Clinton join Quora?
Sentence 2: What is Hillary Clinton really like?

However, the model tends to misclassify sentence pairs as paraphrases when they share a similar
topic or context, but one sentence poses a more specific question while the other addresses a broader
subject. In the following example, both sentences concern improving English learning, but the second
sentence specifically targets English vocabulary. In this case, due to the subtle difference, the model
incorrectly predicts them as paraphrases of each other.

True: 0, Pred: 1
Sentence 1: What are the best ways to improve English?
Sentence 2: How can I improve my English vocabulary?

The model also struggles with paraphrases that have significantly different structures. In the example
below, they are paraphrases of each other, although the first one uses the subject "I" and the second
one uses the subject "my school."

True: 1, Pred: 0
Sentence 1: Am I forced to say the pledge of allegiance at school when I have a different
religion?
Sentence 2: Can my school legally force me to say the pledge of allegiance, and punish me if
I refuse?

STS Task. In our analysis of the STS task, we observed that the model performed well when sentence
pair with high similarity score shared similar structures, clear contexts, or described similar actions
with slightly different wording. For example, the model correctly predicted a high similarity score for
the following pair:

True: 4.0, Pred: 3.9961
Sentence 1: rallies demand ‘justice for trayvon’
Sentence 2: across us, people rally for ‘justice for trayvon’

This pattern can also be explained through the attention heatmap on layer 11, as shown in figure 3.
We can see that word in one sentence tends to have large attention on the exact match of another
sentence.

On the other hand, our model does not have the best performance when the context of two sentences
are ambiguous, sentences have high similarity in structure but differ significantly in meaning, or
there is a mismatch of details between two sentences. For example, when the sentences that have
similarities in structure but differ significantly in meaning or focus, the model tends to overestimate
the similarity score:

True: 0.0, Pred: 2.3796
Sentence 1: you should do it.
Sentence 2: you should prime it first.

In this example, the two sentences share a similar structure, but their meanings are quite different.
The first sentence is a generic statement encouraging someone to perform an action, while the second
sentence specifically advises someone to prime an object before proceeding. Despite their distinct

7



Figure 1: First-head attention
heatmap for layer 1

Figure 2: First-head attention
heatmap for layer 6

Figure 3: First-head attention
heatmap for layer 11

meanings, the model predicts a similarity score of 2.3796, indicating a notable discrepancy between
the true score and the predicted score. We may further improve our model by providing more training
data that have similar characteristics.

An interesting finding from the attention heatmap is observed in the early phase of our swissBERT
model, as shown in figure 1. In this layer, words in one sentence do not attend to words in the
other sentence. This is likely because the model is initially focused on understanding the individual
sentences, processing the syntax, and local dependencies within each sentence.

As the model progresses through the layers, it builds a more complex understanding of the sentences.
For instance, in layer 6 (figure 2), words tend to attend to their local neighbors within each sentence,
indicating a more contextualized understanding of the input text. By layer 11, the model effectively
attends to the exact matches between sentences, capturing the semantic relationships and establishing
connections between words in both sentences.

7 Conclusion

In this study, we demonstrate the effectiveness of swissBERT in transfer learning for downstream
tasks on two sentiment analysis datasets through individual fine-tuning. Building on this, we extend
swissBERT to simultaneously perform three different downstream tasks using multitask finetuning,
including sentiment analysis, paraphrase detection, and semantic textual similarity. We implement
a number of additional extensions and conduct an ablation study to examine their benefits and
drawbacks. Among these extensions, we find pair encoding and auto weighted loss to be highly
effective and consistently improve the model’s performance across tasks. Inspired by the NSP
task from BERT [1], pair encoding concatenates sentence pairs from the paraphrase detection and
semantic textual similarity tasks, allowing for the direct encoding of the concatenated sentence pair in
one BERT forward call. This approach effectively captures the interactions between the words in both
sentences. Furthermore, our experiments show that auto weighted loss provides an effective way to
learn relative task weighting, using a well-formed objective that avoids task weights convergence to
zero and considers homoscedastic uncertainty. Our experiments demonstrate an overall dev accuracy
of 0.754 and an overall test accuracy of 0.758 on the leaderboard.

In light of our findings, we propose several avenues for future research to improve our model’s
multitask performance. First, we plan to train the BERT weights on additional datasets from the three
task categories for the model to generalize to diverse human language, such as the Twitter Sentiment
Analysis Dataset [8], before fine-tuning. We also plan to experiment with synthesizing training data
for the major buckets of errors we identified in Section 6. Additionally, we have observed overfitting
to be a significant challenge, particularly for the sentiment analysis task. To mitigate this, we intend
to explore the use of Smoothness-inducing regularization and Bregman Proximal Point Optimization,
as suggested by Jiang et al. [9], to help our model generalize better on unseen data.

8



References
[1] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep

bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[2] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks, 2019.

[3] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning, 2020.

[4] Lukas Liebel and Marco Körner. Auxiliary tasks in multi-task learning, 2018.

[5] Yifan Peng, Qingyu Chen, and Zhiyong Lu. An empirical study of multi-task learning on BERT
for biomedical text mining. In Proceedings of the 19th SIGBioMed Workshop on Biomedi-
cal Language Processing, pages 205–214, Online, July 2020. Association for Computational
Linguistics.

[6] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew
Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a sen-
timent treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, pages 1631–1642, Seattle, Washington, USA, October 2013. Association
for Computational Linguistics.

[7] Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Specia. SemEval-
2017 task 1: Semantic textual similarity multilingual and crosslingual focused evaluation. In
Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), pages
1–14, Vancouver, Canada, August 2017. Association for Computational Linguistics.

[8] Ibrahim Naji. TSATC: Twitter Sentiment Analysis Training Corpus. In thinknook, 2012.

[9] Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao.
SMART: Robust and efficient fine-tuning for pre-trained natural language models through
principled regularized optimization. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics. Association for Computational Linguistics, 2020.

9



A Appendix

(a) CFIMDB (b) SST

(c) Qoura (d) STS

Figure 4: Training Data Label Distribution

BERT

[CLS] Tok 1 … …Tok N [SEP] Tok 1 Tok M

Token Embeddings + Type Embeddings

Pooling + Dropout

Linear

Logits

Linear

Para Output STS Output

Linear

Softmax

SST Output

Logits + Scaling

Figure 5: Model Architecture with pair-encoding extension. Note that For SST task, there is no
[SEP] token, because the input is only one sentence.

10


	Key Information to include
	Introduction
	Related Work
	Approach
	Baseline
	Extensions

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion
	Appendix

