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Abstract

In this project, we implement a multi-headed minBERT model and then analyze
its performance on sentiment analysis, paraphrase detection, and semantic textual
similarity. To improve the performance of our model on the multi-task problem,
we implement Multiple Negatives Ranking Loss Learning[6], which maximizes
the difference between two dissimilar words while also minimizing the difference
between two similar words. We also add a shared layer between the paraphrase and
similarity tasks to further increase complexity of the model without overfitting. We
find that implementing these extensions, as well as intuitively scaling some losses,
greatly increases the accuracy on all three tasks.

1 Key Information to include
• Mentor: Sauren Khosla
• External Collaborators (if you have any): N/A
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2 Introduction

Multitask learning in machine learning is generally a difficult problem where we aim to have a single
model, in our case the minBERT model, perform well on multiple tasks, that are more or less related.
Without adequate machine complexity and targeted training we are unable to obtain reasonable (say,
better than chance) accuracy on all the tasks at hand due to their differences. Using the minBERT
model embeddings and a multihead multitask classifier, we train a model that solves the following
tasks: sentiment analysis, paraphrase detection, and semantic textual similarity. Sentiment analysis
involves describing phrases as negative, somewhat negative, neutral, somewhat positive, or positive;
paraphrase detection determines whether particular words or phrases convey the same semantic
meaning; and semantic textual similarity seeks to measure the degree of semantic equivalence. These
tasks are all quite different. To improve the expressivity of the embeddings, we implement the
negative rank loss implemented by Henderson et al. (2017) on the output of the minBERT model,
which maximizes the angle difference between two dissimilar words while also minimizing the angle
difference between two similar words. Additionally, since we intuitively, and as stated as a given,
know that the latter two tasks are related, we incorporated a shared layer in between them to have the
model learn from them at the same time, which we found was a simple yet effective way to link the
two tasks together.
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Figure 1: Model architecture

3 Related Work

For our baseline model, we use a BERT model a bidirectional encoder built on a large-scale multi-
headed transformer. We referred to Devlin et al. (2018) for details on the BERT encoder and Vaswani
et al. (2017) for details on the transformer. At a high level, BERT is a method of pre-training language
representations. Pre-training refers to how BERT is first trained on a large source of text. We can
then apply the training results to other natural language processing tasks, such as sentiment analysis,
paraphrase detection, and semantic text similarity. Negative rank loss is presented in Henderson
et al. (2017). The paper presents an efficient machine-learning method for natural language response
suggestions. I.e. suggesting dialog answers to human-made sentences. Reimers and Gurevych (2019)
use the negative rank loss to make meaningful sentence embeddings that can be applied to multiple
tasks, this may imply that the idea can work well for our multitask purpose as well.

4 Approach

The task is a multi-classifier task. We are given either 1 or 2 sentences and must predict either
sentiment of a single sentence, similarity of 2 sentences or do paraphrase detection of 2 sentences.
We create a 3-headed model with three different heads, one that outputs the logits for predicting
sentiment, one that outputs logits for predicting the paraphrase binary logits, and one that outputs the
similarity score. All the models have as a baseline the MinBERT model.

4.1 Model architecture

The model architecture is given in Figure 1

The input for all three tasks is sent through the same BERT encoder. As the paraphrase task and
similarity tasks both base themselves on that the model understands "likeness" between sentences,
we add a layer that is shared among them to capture this functionality. This will hopefully reduce
overfitting as the layer must fit both tasks, it might also improve performance as we increase the
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amount of data this layer can learn from. The shared layer is applied after summing the two BERT
embeddings. Finally all three tasks have their own head.

4.1.1 BERT encoder

For our baseline model, we use a BERT model a bidirectional encoder built on a large-scale multi-
headed transformer. We referred to Devlin et al. (2018) for details on the BERT encoder and Vaswani
et al. (2017) for details on the transformer.

4.1.2 Sentiment head

The sentiment head is a linear layer with output size 5, one dimension for each class.

4.1.3 Shared layer

The shared layer inputs the summed BERT embeddings and passes it through a linear layer with
hidden size the same as the hidden size of BERT.

4.1.4 Paraphrase head

The paraphrase head passes the output of the shared layer through a ReLU and then a linear layer
with output size 1, a binary logit.

4.1.5 Similarity head

The similarity head passes the output of the shared layer through a ReLU and then a linear layer
with output size 1, a scalar output measuring similarity. The output is finally passed through another
ReLU as we know the value should be positive.

4.2 Loss functions for regular tasks

For sentiment classification, the output is a probability so we use categorical cross entropy as a
loss function. The paraphrase task is a binary-decision task. The output is a probability and we
therefore use Binary Cross Entropy to calculate the loss. The similarity task is a regression task,
where prediction is to be done on a scale from 0 to 5. For this regression task it seems reasonable to
use MSE as a loss as the outputs are continuous and the labels can be thought of as generated from
Gaussian distributions.

4.3 Extension to loss functions: Custom Loss function using Negative Rank Loss

To add more expressivity to the word embeddings, we use negative rank loss on the output of
BERTHenderson et al. (2017). We adapt the code from Reimers and Gurevych (2019). We add the
loss to the paraphrase pairs. To implement this, we reload the paraphrase dataset with only positive
datasamples. We generate an extra head to our model that simply outputs the BERT embeddings and
inputs them to our custom loss function.

Let our batch of sentence pair embeddings be: [(a1, b1) (a2, b2) . . . (an, bn)]. Let A be the
cosine similarity of each left sentence embedding to each right sentence embedding.

A =


cos(a1, b1) cos(a1, b2) . . . cos(a1, bn)

cos(a2, b1)
. . .

. . .
cos(an, bn) . . . cos(an, bn)

 (1)

By taking the categorical cross entropy loss between A and a one hot encoded range of numbers, we
are penalizing deviations between A and the identity matrix I. A scaling value is added as a tuning
parameter for the loss function and set to 20 as in the original code.

Regarding implementation, the cosine similarity can easily be calculated by normalizing each
embedding vector and taking the dot product between the embeddings.
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4.4 Training

We choose a finetuning approach for training, by starting from the pretrained BERT weights and set
all parameters as trainable. We do this since we want to train the BERT embeddings with our custom
loss function, but we also deem the 3 tasks to be sufficiently different from the original BERT task to
justify nudging the BERT parameters.

We choose a Round Robin approach for training the 4 different loss functions. At each epoch, we
train all 4 objectives, one at a time. As the loss functions for the Sentiment and the Paraphrase task
output values that are approximately 5x larger than our two other loss functions, we rescale the other
tasks’ learning rate by approximately 5.

Optimization is done with the Adam optimizer. We refer to Kingma and Ba (2014) for details.

5 Experiments

5.1 Data

The data we utilized is described below.

• Paraphrase detection: Quora Dataset1: This dataset consists of 400,000 question pairs
with labels indicating whether particular instances are paraphrases of one another.

– train: (141,506 examples)
– dev: (20,215 examples)
– test: (40,431 examples)

• Sentiment Classification: Stanford Sentiment Treebank (SST) dataset: consists of 11,855
single sentences extracted from movie reviews.

– train: (8,544 examples)
– dev: (1,101 examples)
– test: (2,210 examples)

• Similarity task : SemEval STS Benchmark dataset: 2: consists of 8,628 different sentence
pairs of varying similarity on a scale from 0 (unrelated) to 5 (equivalent meaning).

– train: (6,041 examples)
– dev: (864 examples)
– test: (1,726 examples)

5.2 Evaluation method

The evaluation metric as specified in the default final project statement is a percent accuracy on
unseen data of the predicted labels vs. the labels the model outputs.

5.3 Experimental details

5.4 Pretraining and finetuning the model for single task sentiment classification

The hyperparameters of pretraining and finetuning the model are given below:

• LR : 1e-3 (pretrain) 1e-5 (finetune)
• Epochs : 10
• Batch Size : 8
• Dropout probability : 0.3

The table contains the pretrain and finetune accuracies for our baseline BERT and AdamW optimizer
implementation.

1https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
2https://aclanthology.org/S131004.pdf
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Model Score

SST Pretrain Dev Accuracy 0.371
SST Finetune Dev Accuracy 0.491

CFIMDB Pretrain Dev Accuracy 0.673
CFIMDB Finetune Dev Accuracy 0.963

5.4.1 Training multiclassifier model

Experiment 1.
We have three possibly competing objectives in this first experiment, where we do training in a
epoch-based round robin fashion; we train on each model for a whole epoch at a time. This means
that we technically go through the whole dataset 3 times per epoch. This is before adding the negative
rank loss and a single linear head for each task.

The hyperparameters are given below:

• LR : 1e-3

• Epochs : 10 (x3)

• Batch Size : 8

• Dropout probability : 0.3

Training time was approx. 1.5 hours.

Experiment 2.
We have four possibly competing objectives, once we add in the negative rank loss. Training is done
in a epoch-based round robin fashion, meaning we train on each model for a whole epoch at a time.
This means that we technically go through the whole dataset 4 times per epoch.

The hyperparameters are given below, for our first experiment with negative rank loss:

• LR : 1e-3

• Epochs : 10 (x4)

• Batch Size : 8

• Dropout probability : 0.3

Training time was approximately 5 hours.

Experiment 3.
When we added the shared layer, we scaled the loss by a factor of 5 for just the losses from the
sentiment analysis and the negative rank loss, determined quite loosely from looking at the figure
from our first experiment in Figure 2, which is in the appendix. Essentially, we found that the negative
rank loss and the sentiment analysis loss were quite low. This can be seen in the figures, and the new
loss can also be seen in Figure 3. For the task where the loss is low, we scale up the learning rate.
The hyperparameters are given below, for our second experiment with negative rank loss, as well as
the adding of the shared layer and the aforementioned scaling:

• LR : 5e-3 for SST and Neg Rank, 1e-3 Paraphrase and STS

• Epochs : 10 (x4)

• Batch Size : 8

• Dropout probability : 0.3

Training time was approximately 5 hours.

5.5 Results

Our results are in the two tables below. We only have test set results for our third and final experiment.
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Figure 2: Experiment 2 Losses

Figure 3: Experiment 3 Losses

Model Exp. 1 Exp. 2 Exp. 3

SST dev Accuracy 0.307 0.266 0.401
Paraphrase dev Accuracy 0.652 0.767 0.800

STS dev Correlation 0.214 0.362 0.426
Overall dev score 0.391 N/A 0.542

Model Exp. 3 Score

SST test Accuracy 0.408
Paraphrase test Accuracy 0.801

STS test Correlation 0.396
Overall test score 0.535

6



6 Analysis

Looking at the accuracies for all of our experiments, we can reason well about what metrics we
took to improve our multitask classification. In the first experiment, we had essentially nothing that
allowed for the model to learn the tasks well; since we were doing a round robin and just adding the
losses together, we see that our model learns better than chance, but our dev accuracies for experiment
1 are quite low.
In experiment 2, after incorporating the negative rank loss, we see that the accuracy for paraphrase
dev and STS dev both increase, but SST decreases. We think this is because the cosine loss helps
link embeddings that are more similar together, and forces other embeddings to be perpendicular.
Therefore, the tasks that would benefit from this are the ones that have to assess for similar meanings,
which both paraphrase and STS do. However, the SST accuracy decreased. When we plotted this in
Figure 2, we saw that this is likely because the SST loss was a lot smaller in magnitude compared
to the others. We also observed during training that after adding the negative rank loss that training
accuracy goes very high, creating some dev-train disparity.
Therefore, with all of this in mind, we designed experiment 3 by multiplying the SST loss and
negative rank loss by 5 before adding it to the overall train loss – in practice we simply increased
the learning rate by 5. This would prioritize the sentiment task higher. We also incorporated a
shared layer between the paraphrase and STS outputs to mitigate overfitting, while increasing model
complexity. We see that the dev accuracies for all 3 increase after doing this, which was very exciting,
and justified that the aforementioned reasoning was valid.

7 Conclusion

Two main extensions were done in this work: negative ranking loss and shared model layers for
two-sentence tasks. Negative ranking loss on the paraphrase detection sentences has a positive
outcome on our model, for both the paraphrase detection task and the similarity task. This may
indicate that making embeddings more orthogonal is important for multitask objectives. The shared
layer not only improved the results during training, but considerably during validation; this shows
how well shared layers in multi-task learning can prevent overfitting.

The results for the final model’s dev and test sets were promising, and definitely improved from the
preliminary round-robin approach, especially the paraphrase test accuracy of over 0.8, and far better
than chance on the other two tasks, with a notable improvement from experiment to experiment.

The results are decent, but can definitely be improved. We believe that the last layers could benefit
from further tuning with the BERT parameters freezed. We could also add complexity to the sentiment
head, as overfitting is not our primary issue there.

Future work would consist of more hyperparameter tuning and other model architectures. In addition,
doing more work on balancing the datasets would be beneficial, as well as doing batch-wise round
robin versus epoch-wise round robin.
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